【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為100米,從建筑物AB的頂點A處測得建筑物CD的頂部C處的俯角∠EAC為30°,測得建筑物CD的底部D處的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結果保留根號).
【答案】(1)兩建筑物底部之間水平距離BD的長度為100米;(2)建筑物CD的高度為(100-)米.
【解析】
(1)根據題意得:BD∥AE,從而得到∠BAD=∠ADB=45°,利用BD=AB=100,求得兩建筑物底部之間水平距離BD的長度為100米;
(2)延長AE、DC交于點F,根據題意得四邊形ABDF為正方形,根據AF=BD=DF=100,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的長.
解:(1)根據題意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=100米,
答:兩建筑物底部之間水平距離BD的長度為100米;
(2)延長AE、DC交于點F,根據題意得四邊形ABDF為正方形,
∴AF=BD=DF=100米,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=100×=米,
又∵FD=100米,
∴CD=10-(米).
答:建筑物CD的高度為(100-)米.
科目:初中數(shù)學 來源: 題型:
【題目】國家為了實現(xiàn)2020年全面脫貧目標,實施“精準扶貧”戰(zhàn)略,采取異地搬遷,產業(yè)扶持等措施.使貧困戶的生活條件得到改善,生活質量明顯提高.某旗縣為了全面了解貧困縣對扶貧工作的滿意度情況,進行隨機抽樣調查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據調查數(shù)據繪制成圖1和圖2的統(tǒng)計圖(不完整).
根據以上信息,解答下列問題:
(1)將圖1補充完整;
(2)通過分析,貧困戶對扶貧工作的滿意度(A、B、C類視為滿意)是 ;
(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機抽取兩戶進行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,E是AD中點,EF⊥BC于點F,BC=5,EF=3.
(1)若AB=DC,則四邊形ABCD的面積S=__;
(2)若AB>DC,則此時四邊形ABCD的面積S′__S(用“>”或“=”或“<”填空).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,我們把這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如菱形就是和諧四邊形.
(1)如圖1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求證:BD是梯形ABCD的和諧線;
(2)如圖2,在12×16的網格圖上(每個小正方形的邊長為1)有一個扇形BAC,點A.B.C均在格點上,請在答題卷給出的兩個網格圖上各找一個點D,使得以A、B、C、D為頂點的四邊形的兩條對角線都是和諧線,并畫出相應的和諧四邊形;
(3)四邊形ABCD中,AB=AD=BC,∠BAD=90°,AC是四邊形ABCD的和諧線,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,是邊的中點,點是正方形內一動點,,連接,將線段繞點逆時針旋轉得,連接,.則線段長的最小值( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 中,,, ,四邊形PDEF是矩形,, .矩形PDEF從點B出發(fā),沿射線BC以每秒1個單位長度的速度向點C運動,同時點Q從點P出發(fā),沿折線P-D-E以每秒1個單位長度的速度勻速運動,當點Q到達點E時,點Q與矩形PDEF同時停止運動,連接QC,設點Q的運動時間為t秒( ).
(1)求線段PC的長(用含t的代數(shù)式表示);
(2)當點Q落在AB邊上時,求t的值;
(3)設 的面積為S,求S與t之間的函數(shù)關系式;
(4)當四邊形PDEF與 重疊部分圖形為五邊形時,直接寫出使為直角三角形時t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com