【題目】已知:在矩形中,,,四邊形的三個(gè)頂點(diǎn)、、分別在矩形、、上,

如圖,當(dāng)四邊形為正方形時(shí),求的面積;

如圖,當(dāng)四邊形為菱形時(shí),設(shè),的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.

【答案】(1)10;(2),().

【解析】

(1)只要證明AEH≌△BFE.推出BF=AE=2,由MGF≌△BFE,推出MGF≌△AEH,求出FC、GM即可解決問(wèn)題;

(2)過(guò)點(diǎn)GGMBC,垂足為M,連接HF,根據(jù)SGFCFCGM,計(jì)算即可.

(1)如圖,過(guò)點(diǎn),垂足為,

由矩形可知:

由正方形可知:

,,

,

,

同理可證:,

,

,

如圖,過(guò)點(diǎn),垂足為,連接

由矩形得:,

,

由菱形得:,,

,

,

,,

,

,

,

,

即:,

定義域:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,EAB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)MBC邊上,且∠MDF=∠ADF。

1)求證:△ADE≌△BFE;

2)如果FM=CM,求證:EM垂直平分DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)同學(xué)到距學(xué)校6千米的郊外秋游,一部分同學(xué)步行,另一部分同學(xué)騎自行車,沿相同路線前往,如圖分別表示步行和騎車的同學(xué)前往目的地所走的路程y(千米)與所用時(shí)間(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯(cuò)誤的是

A.騎車的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘

B.騎車的同學(xué)比步行的同學(xué)早6分鐘到達(dá)目的地

C.騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20分鐘

D.步行同學(xué)的速度是6千米/小時(shí),騎車同學(xué)的速度是千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線,交的平分線于點(diǎn),交的外角平分線于點(diǎn)

判斷的大小關(guān)系?并說(shuō)明理由;

當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并說(shuō)出你的理由;

的條件下,當(dāng)滿足什么條件時(shí),四邊形是正方形.直接寫出答案,不需說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凸四邊形的四個(gè)頂點(diǎn)滿足:每一個(gè)頂點(diǎn)到其他三個(gè)頂點(diǎn)距離之積都相等.則四邊形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)邊上一點(diǎn),且,,則的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB6,AC3,將△ADC沿AC折疊,點(diǎn)D落在點(diǎn)D′處,CD′AB交于點(diǎn)F.點(diǎn)P為線段AC(不含點(diǎn)AC)上任意一點(diǎn),PMAB于點(diǎn)MPNCD′于點(diǎn)N,PM+PN_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.

(1)分別寫出A、B、C的坐標(biāo);

(2)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出A1B1C1,使A1B1C1ABC關(guān)于y軸對(duì)稱,并寫出B1的坐標(biāo);

(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出A2B2C2,使A2B2C2ABC關(guān)于原點(diǎn)對(duì)稱,并寫出A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案