【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,他們的形狀、大小、質(zhì)地等完全相同.小蘭先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,放回盒子,搖勻后,再由小田隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖法表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小蘭、小田各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的頻率;
(3)求小蘭、小田各取一次小球所確定的數(shù)x,y滿足y<的概率.
【答案】
(1)
解:列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
所有等可能的結(jié)果有16種,分別為(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);
(2)
解:其中點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的情況有:(2,3);(3,2)共2種,
則P(點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上)==;
(3)
解:所確定的數(shù)x,y滿足y<的情況有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8種,
則P(所確定的數(shù)x,y滿足y<)==.
【解析】(1)列表得出所有等可能的情況數(shù)即可;
(2)找出點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的情況數(shù),即可求出所求的概率;
(3)找出所確定的數(shù)x,y滿足y<的情況數(shù),即可求出所求的概率.
【考點(diǎn)精析】關(guān)于本題考查的列表法與樹狀圖法,需要了解當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,將一個(gè)邊長(zhǎng)為2的正方形ABCD和一個(gè)長(zhǎng)為2、寬為1的矩形CEFD拼在一起,構(gòu)成一個(gè)大的矩形ABEF,現(xiàn)將小矩形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到矩形CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)點(diǎn)D′恰好落在EF邊上時(shí),求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC的中點(diǎn),且0°<α<90°,求證:GD′=E′D;
(3)小矩形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過(guò)程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某養(yǎng)殖場(chǎng)計(jì)劃購(gòu)買甲、乙兩種魚苗共700尾,甲種魚苗每尾3元,乙種魚苗每尾5元,相關(guān)資料表明:甲、乙兩種魚苗的成活率分別為85%和90%
(1)若購(gòu)買這兩種魚苗共用去2500元,則甲、乙兩種魚苗各購(gòu)買多少尾?
(2)若要使這批魚苗的總成活率不低于88%,則甲種魚苗至多購(gòu)買多少尾?
(3)設(shè)甲種魚苗購(gòu)買m尾,購(gòu)買魚苗的費(fèi)用為w元,列出w與x之間的函數(shù)關(guān)系式,運(yùn)用一次函數(shù)的性質(zhì)解決問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,E為矩形ABCD邊AD上的一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是2cm/s.若P、Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2),已知y與t的函數(shù)關(guān)系圖象如圖2,則下列結(jié)論錯(cuò)誤的是( 。
A.AE=12cm
B.sin∠EBC=
C.當(dāng)0<t≤8時(shí),y=t2
D.當(dāng)t=9s時(shí),△PBQ是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列一組圖形,其中圖形①中共有2顆星,圖形②中共有6顆星,圖形③中共有11顆星,圖形④中共有17顆星,…,按此規(guī)律,圖形⑧中星星的顆數(shù)是( 。
A.43
B.45
C.51
D.53
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組建了書法、音樂(lè)、美術(shù)、舞蹈、演講五個(gè)社團(tuán),全校1600名學(xué)生每人都參加且只參加了其中一個(gè)社團(tuán)的活動(dòng).校團(tuán)委從這1600名學(xué)生中隨機(jī)選取部分學(xué)生進(jìn)行了參加活動(dòng)情況的調(diào)查,并將調(diào)查結(jié)果制成了如圖不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖完成下列問(wèn)題:
參加本次調(diào)查有名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)分析,全校約有名學(xué)生參加了音樂(lè)社團(tuán);請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E.
(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)經(jīng)過(guò)B,C兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PCD的面積最大時(shí),Q從點(diǎn)P出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到拋物線的對(duì)稱軸上點(diǎn)M處,再沿垂直于拋物線對(duì)稱軸的方向運(yùn)動(dòng)到y(tǒng)軸上的點(diǎn)N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)A處停止.當(dāng)點(diǎn)Q的運(yùn)動(dòng)路徑最短時(shí),求點(diǎn)N的坐標(biāo)及點(diǎn)Q經(jīng)過(guò)的最短路徑的長(zhǎng);
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)E在射線AE上移動(dòng),點(diǎn)E平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)E′,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,將△AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△A1OC1的位置,點(diǎn)A,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1 , C1 , 且點(diǎn)A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)E′的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)a,n,m,b滿足a<n<m<b,這四個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)分別為A,N,M,B(如圖),若AM2=BMAB,BN2=ANAB,則稱m為a,b的“大黃金數(shù)”,n為a,b的“小黃金數(shù)”,當(dāng)b﹣a=2時(shí),a,b的大黃金數(shù)與小黃金數(shù)之差m﹣n= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com