【題目】如圖,在△ABC中,∠CAB=70°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′∥AB,則旋轉(zhuǎn)角的度數(shù)為( )
A.35°
B.40°
C.50°
D.70°
【答案】B
【解析】解:∵CC′∥AB,∠CAB=70°, ∴∠C′CA=∠CAB=70°,
∵將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,
∴∠C′AB′=∠CAB=70°,AC′=AC,
∴∠C=∠AC′C=∠C′CA=70°,
∴∠C′AC=180°﹣70°﹣70°=40°,
∴∠C′AC=∠BAB′=40°,
即旋轉(zhuǎn)角的度數(shù)是40°,
故選B.
根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠C′AB′=∠CAB=70°,AC′=AC,求出∠C=∠AC′C=∠C′CA=70°,∠C′AC=∠BAB′=40°,根據(jù)平行線的性質(zhì)得出∠C′CA=∠CAB=70°,求出∠C′AC即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某菜農(nóng)搭建了一個(gè)橫截面為拋物線的大棚,尺寸如圖,若菜農(nóng)身高為1.8m,他在不彎腰的情況下,在棚內(nèi)的橫向活動(dòng)范圍是m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB= ,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰好在弧EF上,則圖中陰影部分的面積為(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( )
A.c>﹣1
B.b>0
C.2a+b≠0
D.9a+c>3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市雙城同創(chuàng)的工作中,某社區(qū)計(jì)劃對(duì)1200m2的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo),由甲、乙兩個(gè)施工隊(duì)來(lái)完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為300m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.
(1)甲、乙兩施工隊(duì)每天分別能完成綠化的面積是多少?
(2)設(shè)先由甲隊(duì)施工x天,再由乙隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)關(guān)系式.
(3)若甲隊(duì)每天綠化費(fèi)用為0.4萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.15萬(wàn)元,且甲、乙兩隊(duì)施工的總天數(shù)不超過(guò)14天,則如何安排甲、乙兩隊(duì)施工的天數(shù),使施工費(fèi)用最少?并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°
(1)請(qǐng)用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明).
(2)若∠B=60°,AB=3,求⊙P的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=8,點(diǎn)M在⊙O上,∠MAB=40°,N是弧MB的中點(diǎn),P是直徑AB上的一動(dòng)點(diǎn),PM+PN的最小值為( )
A.4 +1
B.4
C.4 +1
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù) (k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com