【題目】在正方形中,點,,分別是邊,,的中點,點是直線上一點.將線段繞點逆時針旋轉,得到線段,連接.
(1)如圖1,請直接寫出與的數(shù)量及位置關系;
(2)如圖2,若點在線段的延長線上,猜想線段,,之間滿足的數(shù)量關系,并證明你的結論.
(3)若點在線段的反向延長線上,請在圖3中補全圖形并直接寫出線段,,之間滿足的數(shù)量關系.
【答案】(1)且;(2),證明見解析;(3)
【解析】
(1)由正方形的三邊中點,可根據(jù)邊角邊證明,所以,再由△AEF和△BGF為等腰直角三角形,推出;
(2)由旋轉得到,,再推出,然后根據(jù)邊角邊證明,所以,然后由可推出線段,,之間的關系;
(3)同(2)可利用邊角邊證明,所以,然后由推出線段,,之間的關系.
(1)證明:∵正方形,,,分別是邊,,的中點,
∴,,
∴,
∴,,
∴,即.
(2);
證明:∵將線段繞點逆時針旋轉,得到線段,
∴,,
∴,
∵,
∴,
∴,
在和中,
,,,
∴,
∴.
∵是等腰直角三角形,
∴,
∴,
即.
(3)補全圖形如下圖所示,
,證明如下:
∵將線段繞點逆時針旋轉,得到線段,
∴,,
∵,
∴,
∴,
在和中,
,,,
∴,
∴.
∵是等腰直角三角形,
∴,
∴,
即.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)的圖像與矩形AOBC的邊AC,BC分別交于點E、F,點C的坐標為(8,6),將△CEF沿EF翻折,C點恰好落在OB上的點D處,則k的值為( )
A.B.6C.12D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,中,,動點從出發(fā),以每秒個單位長度的速度向終點運動,過點作交于點,過點作的平行線,與過點且與垂直的直線交于點,設點的運動時間為(秒)
(1)用含的代數(shù)式表示線段的長;
(2)求當點落在邊上時t的值;
(3)設與重合部分圖形的面積為(平方單位),求與的函數(shù)關系式;
(4)連結,若將沿它自身的某邊翻折,翻折前后的兩個三角形形成菱形,直接寫出此時的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】城市中“打車難”一直是人們關注的一個社會熱點問題.近幾年來,“互聯(lián)網(wǎng)+”戰(zhàn)略與傳統(tǒng)出租車行業(yè)深度融合,“優(yōu)步”、“滴滴出行”等打車軟件就是其中典型的應用,名為“數(shù)據(jù)包絡分析”(簡稱DEA)的一種效率評價方法,可以很好地優(yōu)化出租車資源配置,為了解出租車資源的“供需匹配”,北京、上海等城市對每天24個時段的DEA值進行調(diào)查,調(diào)查發(fā)現(xiàn),DEA值越大,說明匹配度越好.在某一段時間內(nèi),北京的DEA值y與時刻t的關系近似滿足函數(shù)關系(a,b,c是常數(shù),且≠0),如圖記錄了3個時刻的數(shù)據(jù),根據(jù)函數(shù)模型和所給數(shù)據(jù),當“供需匹配”程度最好時,最接近的時刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,動點從點出發(fā),以的速度沿射線運動,同時動點Q從點C出發(fā),以2cm/s的速度沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t秒,的面積為.
(1)直接寫出的長:= ;
(2)求出關于的函數(shù)關系式,并求出當點運動幾秒時,;
(3)作于點,當點、運動時,線段的長度是否改變?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)某學校“智慧方園”數(shù)學社團遇到這樣一個題目:
如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.
經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).
請回答:∠ADB= °,AB= .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價格銷售一種成本價為40元的文化紀念杯,每星期可售出100只。后來經(jīng)過市場調(diào)查發(fā)現(xiàn),每只杯子的售價每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀念杯要想平均每星期獲利2240元,請回答:
(1)每只杯應降價多少元?
(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該公司應該按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】元旦期間,某賓館有50個房間供游客居住,當每個房間每天的定價為180元時,房間會全部住滿;當每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.
(1)若房價定為200元時,求賓館每天的利潤;
(2)房價定為多少時,賓館每天的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com