【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷.卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)n是8的整數(shù)倍時(shí),均可采用此方法求解.如圖,是解決這類問題的程序框圖,若輸入n=40,則輸出的結(jié)果為 .
【答案】121
【解析】解:模擬程序的運(yùn)行,可得 n=40,S=40
執(zhí)行循環(huán)體,n=32,S=72
不滿足條件n=0,執(zhí)行循環(huán)體,n=24,S=96
不滿足條件n=0,執(zhí)行循環(huán)體,n=16,S=112
不滿足條件n=0,執(zhí)行循環(huán)體,n=8,S=120
不滿足條件n=0,執(zhí)行循環(huán)體,n=0,S=120
滿足條件n=0,可得S=121,退出循環(huán),輸出S的值為121.
故答案為:121.
模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的n,S的值,當(dāng)n=0時(shí),滿足條件退出循環(huán),即可得到輸出的S值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜邊AB上取一點(diǎn)D,過點(diǎn)D作DE//BC,交AC于點(diǎn)E.現(xiàn)將△ADE繞點(diǎn)A旋轉(zhuǎn)一定角度到如圖2所示的位置(點(diǎn)D在△ABC的內(nèi)部),使得∠ABD+∠ACD=90°.
(1)①求證:△ABD∽△ACE;
②若CD=1,BD= ,求AD的長(zhǎng);
(2)如圖3,將原題中的條件“AC=BC”去掉,其它條件
不變,設(shè) ,若CD=1,BD=2,AD=3,求k的值;
(3)如圖4,將原題中的條件“∠ACB=90°”去掉,其它條件不變,若 ,設(shè)CD=m , BD=n , AD=p , 試探究m , n , p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動(dòng)車速度為200千米/小時(shí),行駛180千米后,中途要停靠徐州10分鐘,若動(dòng)車先出發(fā)半小時(shí),兩車與甲地之間的距離y(千米)與動(dòng)車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題獲得學(xué)分2分,便可通過考察.已知6道備選題中考生甲有4題能正確完成:考生乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.求: (Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(Ⅱ)請(qǐng)你判斷兩考生的實(shí)驗(yàn)操作學(xué)科能力,比較他們能通過本次考查的可能性大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對(duì)數(shù)的底數(shù). (Ⅰ)當(dāng)f(x)>0時(shí),求實(shí)數(shù)x的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求使得f(x)+k>0成立的最小正整數(shù)k.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名維修工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為 . (Ⅰ)若出現(xiàn)故障的機(jī)器臺(tái)數(shù)為x,求x的分布列;
(Ⅱ)該廠至少有多少名維修工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?
(Ⅲ)已知一名維修工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位維修工人1萬元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬元的利潤(rùn),否則將不產(chǎn)生利潤(rùn),若該廠現(xiàn)有2名維修工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+3|+|2x﹣1|. (Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實(shí)數(shù)根之積為負(fù),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com