(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設E點移動距離為xx>0).

⑴△EFG的邊長是____(用含有x的代數(shù)式表示),當x=2時,點G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當0<x≤2,yx之間的函數(shù)關系式;
②當2<x≤6時,y與x之間的函數(shù)關系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.

(1)x,D點
(2)①當0<x≤2時,△EFG在梯形ABCD內(nèi)部,所以y=x2
②分兩種情況:Ⅰ.當2<x3時,此時 y=x2(3x-6)2
Ⅱ.當3≤x≤6時,y=6-x)2
(3)當x=時,ymax解析:
(滿分13分)
解:⑴;………………3分
⑵ ①當0<x≤2時,△EFG在梯形ABCD內(nèi)部,所以y=x2;………………6分
②分兩種情況:
Ⅰ.當2<x3時,如圖1,點E、點F在線段BC上,

EFG與梯形ABCD重疊部分為四邊形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
由于在Rt△NMG中,∠G=60°,
所以,此時 y=x2(3x-6)2.………………9分
Ⅱ.當3≤x≤6時,如圖2,

點E在線段BC上,點F在射線CH上,
EFG與梯形ABCD重疊部分為△ECP,
∵EC=6-x,
y=6-x)2.………………11分
⑶當0<x≤2時,∵y=x2在x>0時,y隨x增大而增大,
∴x=2時,y最大;
當2<x3時,∵y在x=時,y最大;
當3≤x≤6時,∵y在x<6時,y隨x增大而減小,
∴x=3時,y最大.………………12分
綜上所述:當x=時,y最大.………………13分
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM.

⑴ 求證:△AMB≌△ENB;

⑵ ①當M點在何處時,AM+CM的值最;

②當M點在何處時,AM+BM+CM的值最小,并說明理由;

⑶ 當AM+BM+CM的最小值為時,求正方形的邊長.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM.

⑴ 求證:△AMB≌△ENB;
⑵ ①當M點在何處時,AM+CM的值最小;
②當M點在何處時,AM+BM+CM的值最小,并說明理由;
⑶ 當AM+BM+CM的最小值為時,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生考試數(shù)學卷(廣東珠海) 題型:解答題

(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設E點移動距離為xx>0).

⑴△EFG的邊長是____(用含有x的代數(shù)式表示),當x=2時,點G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當0<x≤2,yx之間的函數(shù)關系式;
②當2<x≤6時,y與x之間的函數(shù)關系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生考試數(shù)學卷(廣東珠海) 題型:解答題

(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設E點移動距離為xx>0).

⑴△EFG的邊長是____(用含有x的代數(shù)式表示),當x=2時,點G的位置在_______;

⑵若△EFG與梯形ABCD重疊部分面積是y,求

①當0<x≤2,yx之間的函數(shù)關系式;

②當2<x≤6時,y與x之間的函數(shù)關系式;

⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生考試數(shù)學卷(廣東珠海) 題型:解答題

(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM.

⑴ 求證:△AMB≌△ENB;

⑵ ①當M點在何處時,AM+CM的值最。

②當M點在何處時,AM+BM+CM的值最小,并說明理由;

⑶ 當AM+BM+CM的最小值為時,求正方形的邊長.

 

 

查看答案和解析>>

同步練習冊答案