【題目】如圖,已知拋物線與x軸交于A(﹣10)、B3,0)兩點,與y軸交于點C0,3).

1)求拋物線的解析式;

2)點D是第一象限內(nèi)拋物線上的一個動點(與點C、B不重合),過點DDF⊥x軸于點F,交直線BC于點E,連接BD、CD.設(shè)點D的橫坐標(biāo)為m△BCD的面積為S.求S關(guān)于m的函數(shù)解析式及自變量m的取值范圍,并求出S的最大值;

3)已知M為拋物線對稱軸上一動點,若△MBC是以BC為直角邊的直角三角形,請直接寫出點M的坐標(biāo).

【答案】1y=﹣x2+2x+3 2; 3)(1,﹣2),(1,4

【解析】

1)拋物線解析式為yax1)(x3)=ax22x3),將點C坐標(biāo)代入即可求解;

2)先求出直線BC的解析式,設(shè)Dm,﹣m2+2m+3),Em,﹣m+3),得到DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,再利用,即可求解;

3)分MC是斜邊、MB是斜邊兩種情況,分別求解即可.

解:(1)拋物線解析式為yax+1)(x3)=ax22x3),

將點C坐標(biāo)代入,得

-3a3,解得:a-1

拋物線解析式為y=﹣x2+2x+3;

2)設(shè)直線BC的函數(shù)解析式為ykx+b,

直線BC過點B3,0),C0,3),

,解得,

∴y=﹣x+3,

設(shè)Dm,﹣m2+2m+3),Em,﹣m+3),

∴DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,

,

,

當(dāng)時,S有最大值,最大值;

3)拋物線y=﹣x2+2x+3的對稱軸為直線x=1

設(shè)點M1,m),

MB2m2+4,MC21+m32BC218;

當(dāng)MC是斜邊時,

1+m32m2+4+18;

解得:m=﹣2;

當(dāng)MB是斜邊時,

同理可得:m4

故點M的坐標(biāo)為:(1,﹣2),(1,4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x0)的圖象經(jīng)過AB兩點,若菱形ABCD的面積為2,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計圖中,m=   ,n=   

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點,點A4,0),點B0,4),CAB中點,連接OC,將△AOC繞點A順時針旋轉(zhuǎn),得到△AMN,記旋轉(zhuǎn)角為α,點O,C的對應(yīng)點分別是M,N.連接BM,PBM中點,連接OP,PN

(Ⅰ)如圖.當(dāng)α45°時,求點M的坐標(biāo);

(Ⅱ)如圖,當(dāng)α180°時,求證:OPPNOPPN;

(Ⅲ)當(dāng)△AOC旋轉(zhuǎn)至點B,MN共線時,求點M的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=3x5與反比例函數(shù)y2=的圖象相交A2,m),Bn,﹣6)兩點,連接OA,OB

1)求kn的值;

2)求AOB的面積;

3)直接寫出y1 y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q

1)如圖,當(dāng)點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;

2)如圖,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;

3)在(2)的條件下,BP=2CQ=9,則BC的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)yxx0)的圖象與反比例函數(shù)y的圖象交于點A,若點A繞點B,0)順時針旋轉(zhuǎn)90°后,得到的點A'仍在y的圖象上,則點A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點,AFFD,連EFACG,則AGGC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,將點向右平移6個單位長度,得到點

(1)直接寫出點的坐標(biāo);

(2)若拋物線經(jīng)過點,求的值;

(3)若拋物線與線段有且只有一個公共點時,求拋物線頂點橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案