【題目】如圖,ABC中,A=40°B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

【答案】75

【解析】

試題分析:首先根據(jù)三角形的內角和定理求得ACB的度數(shù),以及BCD的度數(shù),根據(jù)角平分線的定義求得BCE的度數(shù),則ECD可以求解,然后在CDF中,利用內角和定理即可求得CDF的度數(shù).

∵∠A=40°B=70°, ∴∠ACB=180°﹣∠A﹣∠B=70° CE平分ACB,

∴∠ACE=ACB=35° CDAB于D, ∴∠CDA=90°, ACD=180°﹣∠A﹣∠CDA=50°

∴∠ECD=ACD﹣∠ACE=15° DFCE, ∴∠CFD=90° ∴∠CDF=180°﹣∠CFD﹣∠DCF=75°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算(﹣20)+17的結果是(  )

A. ﹣3 B. 3 C. ﹣2017 D. 2017

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程承包方指定由甲、乙兩個工程隊完成某項工程,若由甲工程隊單獨做需要40天完成,現(xiàn)在甲、乙兩個工程隊共同做20天后,由于甲工程隊另有其它任務不再做該工程,剩下工程由乙工程隊再單獨做了20天才完成任務.

1)求乙工程隊單獨完成該工程需要多少天?

2)如果工程承包方要求乙工程隊的工作時間不能超過30天,要完成該工程,甲工程隊至少要工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算﹣3+|﹣5|的結果是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1、半圓O2、…、半圓On與直線y=x相切,設半圓O1、半圓O2、…、半圓On的半徑分別是r1、r2、…、rn,則當r1=2時,r2016=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解實驗初中2015級學生的跳繩成績,夏老師隨機調查了該年級體育模擬考試中部分同學的跳繩成績,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列各題:

(1)被調查同學跳繩成績的中位數(shù)是 ,并補全上面的條形統(tǒng)計圖;

(2)如果我校初三年級共有學生1800人,估計跳繩成績能得8分的學生約有 人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有A、B兩個口袋,A口袋中裝有兩個分別標有數(shù)字2,3的小球;B口袋中裝有三個分別標有數(shù)字3,4,5的小球.小明先從A口袋中隨機取出-個小球,再從B口袋中隨機取出一個小球;

(1)用樹狀圖法或列表法表示小明所取出的二個小球的和為奇數(shù)的概率.

(2)若從A口袋中取出的小球記為x,從B口袋中取出的小球記為y,則點M(x,y)落在直線y=x+1上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果用(7,3)表示七年級三班,則(9,6)表示________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一元二次方程x2-2x-m=0無實數(shù)根,則一次函數(shù)y=(m+1)x+m-1的圖像不經過第幾象限( )

A. 第四象限 B. 第三象限

C. 第二象限 D. 第一象限

查看答案和解析>>

同步練習冊答案