【題目】如圖,點(diǎn)D是等邊三角形ABC的邊BC上一點(diǎn),以AD為邊作等邊△ADE,連接CE.
(1)求證:;
(2)若∠BAD=20°,求∠AEC的度數(shù).
【答案】(1)見解析;(2)100°.
【解析】
(1)根據(jù)△ADE與△ABC都是等邊三角形,得到AC=AB,AE=AD,∠DAE=∠BAC=60°,從而得到∠DAE+∠CAD=∠BAC+∠CAD,即∠CAE=∠BAD,利用SAS證得△ABD≌△ACE;
(2)由△ABD≌△ACE,得到∠ACE=∠B=60°,∠BAD=∠CAE=20°,再由三角形內(nèi)角和為180°即可求出∠AEC的度數(shù).
(1)證明:∵△ADE與△ABC都是等邊三角形,
∴AC=AB,AE=AD,∠DAE=∠BAC=60°,
∴∠DAE+∠CAD=∠BAC+∠CAD,
即∠CAE=∠BAD,
在△CAE與△BAD中,
,
∴△ABD≌△ACE(SAS);
(2)∵△ABD≌△ACE,
∴∠ACE=∠B=60°,∠BAD=∠CAE=20°,
∴∠AEC=180°-60°-20°=100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與兩坐標(biāo)軸分別交于A、B兩點(diǎn),拋物線 經(jīng)過點(diǎn)A、B,點(diǎn)P為直線AB上的一個(gè)動(dòng)點(diǎn),過P作y軸的平行線與拋物線交于C點(diǎn), 拋物線與x軸另一個(gè)交點(diǎn)為D.
(1)求圖中拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),求線段PC的長(zhǎng)度的最大值;
(3)在直線AB上是否存在點(diǎn)P,使得以O、A、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)點(diǎn)P 的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,點(diǎn)在邊上移動(dòng)(點(diǎn)不與點(diǎn), 重合),滿足,且點(diǎn)、分別在邊、上.
()求證: .
()當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),為直線上的兩點(diǎn),過,兩點(diǎn)分別作軸的平行線交雙曲線()于、兩點(diǎn).若,則的值為( )
A.12B.7C.6D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,平面上的動(dòng)點(diǎn)P滿足PC⊥AB,記∠APB=α.
(1)如圖1,當(dāng)點(diǎn)P在直線BC上方時(shí),直接寫出∠PAC的大小(用含α的代數(shù)式表示);
(2)過點(diǎn)B作BC的垂線BD,同時(shí)作∠PAD=60°,射線AD與直線BD交于點(diǎn)D.
①如圖2,判斷△ADP的形狀,并給出證明;
②連結(jié)CD,若在點(diǎn)P的運(yùn)動(dòng)過程中,CD=AB.直接寫出此時(shí)α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京劇臉譜是京劇藝術(shù)獨(dú)特的表現(xiàn)形式.京劇表演中,經(jīng)常用臉譜象征人物的性格,品質(zhì),甚至角色和命運(yùn).如紅臉代表忠心耿直,黑臉代表強(qiáng)悍勇猛.現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外一張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再從中隨機(jī)抽取一張.
請(qǐng)用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率.(圖案為“紅臉”的兩張卡片分別記為A1、A2,圖案為“黑臉”的卡片記為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2﹣mx+﹣=0的兩個(gè)實(shí)數(shù)根.
(1)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點(diǎn)
(1)求b,k的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時(shí),函數(shù)值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個(gè)單位,當(dāng)直線與雙曲線沒有交點(diǎn)時(shí),求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com