【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).
【答案】(1)證明見解析(2)結(jié)論不成立
【解析】
(1)易證∠FBA=∠FCE,結(jié)合條件容易證到△FAB≌△DAC,從而有FA=DA,就可得到AB=AD+BD=FA+BD.
(2)由于點D的位置在變化,因此線段AF、BD、AB之間的大小關(guān)系也會相應(yīng)地發(fā)生變化,只需畫出圖象并借鑒(1)中的證明思路就可解決問題.
(1)證明∵BE⊥CD即∠BEC=90°,∠BAC=90°,
∴∠F+∠FBA=90°,∠F+∠FCE=90°,
∴∠FBA=∠FCE,
∵∠FAB=180°-∠DAC=90°,
∴∠FAB=∠DAC,
在△FAB和△DAC中,,
∴△FAB≌△DAC(ASA),
∴FA=DA,
∴AB=AD+BD=FA+BD,
∴BD=AB-AF;
(2)解:(1)中的結(jié)論不成立.
點D在AB的延長線上時,AB=AF-BD;點D在AB的反向延長線上時,AB=BD-AF.
理由如下:
①當點D在AB的延長線上時,如圖2.
同理可得:FA=DA.
則AB=AD-BD=AF-BD.
②點D在AB的反向延長線上時,如圖3.
同理可得:FA=DA.
則AB=BD-AD=BD-AF.
科目:初中數(shù)學 來源: 題型:
【題目】張明和李強兩名運動愛好者周末相約到東湖綠道進行跑步鍛煉.(1)周日早上6點,張明和李強同時從家出發(fā),分別騎自行車和步行到離家距離分別為4.5千米和1.2千米的綠道落雁島入口匯合,結(jié)果同時到達,且張明每分鐘比李強每分鐘多行220米,求張明和李強的速度分別是多少米/分?
(1)兩人到達綠道后約定先跑 6 千米再休息,李強的跑步速度是張明跑步速度的m倍,兩人在同起點,同時出發(fā),結(jié)果李強先到目的地n分鐘.
①當m=12,n=5時,求李強跑了多少分鐘?
②張明的跑步速度為 米/分(直接用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠色出行,低碳健身”已成為廣大市民的共識.為方便市民出行,東臺市推出了公共自行車系統(tǒng),收費以小時為單位,每次使用不超過1小時的免費,超過1小時后,不足1小時的部分按1小時收費.小紅同學通過調(diào)查得知,自行車使用時間為3小時,收費2元;使用時間為4小時,收費3元.她發(fā)現(xiàn)當使用時間超過1小時后用車費用與使用時間之間存在一次函數(shù)的關(guān)系.
(1)設(shè)使用自行車的費用為元,使用時間為小時(為大于1的整數(shù)),求與的函數(shù)解析式;
(2)若小紅此次使用公共自行車5小時,則她應(yīng)付多少元費用?
(3)若小紅此次使用公共自行車付費6元,求她所使用自行車的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形AOBC的兩邊在坐標軸上,D是OB的中點,直線CD的函數(shù)關(guān)系式為y=2x﹣6,則△CDE的面積為 . (平方單位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:等腰△ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( 。
A. 6 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C在同一直線上,
(1)若∠A=∠3,依據(jù)__________,可得______∥_______;
(2)若∠______=∠______,則依據(jù)內(nèi)錯角相等,兩直線平行,可得DB∥EC;
(3)若∠______+∠_______=180°,則AD∥BE,依據(jù)是____________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com