【題目】如圖,已知反比例函數(shù)的圖象與直線都經(jīng)過點(diǎn),,且直線軸于點(diǎn),交軸于點(diǎn),連接.

1)直接寫出的值及直線的函數(shù)表達(dá)式;

2的面積相等嗎?寫出你的判斷,并說明理由;

3)若點(diǎn)軸上一點(diǎn),當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo).

【答案】(1),,; 2)相等.理由見解析;(3.

【解析】

1)利用待定系數(shù)法即可解決問題.

2)利用三角形的面積公式求出三角形的面積即可判斷.

3)如圖作點(diǎn)Q關(guān)于y軸的對稱點(diǎn)Q’,理解PQ’y軸于M,參數(shù)MQ+MP的值最小.求出最小PQ’的解析式即可解決問題.

解:(1)∵反比例函數(shù)的圖象與直線都經(jīng)過點(diǎn),

,,

則有,解得

∴直線的解析式為.

2)相等.

理由:∵

∴當(dāng)時(shí),,即,當(dāng)時(shí),,即,

.

3)如圖作點(diǎn)關(guān)于軸的對稱點(diǎn),理解軸于,參數(shù)的值最小.

,

直線的解析式為,則有,6

解得,

∴直線的解析式為,

當(dāng)時(shí),,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊ABx軸上,頂點(diǎn)Dy軸的正半軸上,點(diǎn)C在第一象限.將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DEBC交于點(diǎn)F.若y(k≠0)圖象經(jīng)過點(diǎn)C,且SBEF,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D,E分別在邊ACAB上,BDCE交于點(diǎn)O,給出下列四個(gè)條件:

①∠EBO=DCO;BE=CD;OB=OC;OE=OD.

從上述四個(gè)條件中,選取兩個(gè)條件,不能判定ABC是等腰三角形的是:(

A. ①②B. ①③C. ③④D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點(diǎn)C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點(diǎn)CCFAB于點(diǎn)F,交BD于點(diǎn)G,過CCEBDAB的延長線于點(diǎn)E

1)求證:CE是⊙O的切線;

2)求證:CG=BG

3)若∠DBA=30°,CG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線過點(diǎn)軸上的點(diǎn),交軸于點(diǎn),點(diǎn)該物上限一點(diǎn),且

1)拋物線的解析式為:____________;

2)如圖2,過點(diǎn)軸交直線于點(diǎn),求點(diǎn)在運(yùn)動(dòng)的過程中線段長度的最大值;

3)如圖3,若,在對稱軸左側(cè)的拋物線上是否存在點(diǎn),使?若存在,請求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是_____.①在同一平面內(nèi),a,b,c為直線,若ab,bc,則ac.②“若acbc,則ab”的逆命題是真命題.③若Ma,2),N1b)關(guān)于x軸對稱,則a+b=﹣1.④一個(gè)多邊形的邊數(shù)增加1條時(shí),內(nèi)角和增加180°,外角和不變.⑤的整數(shù)部分是a,小數(shù)部分是b,則ab33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí)點(diǎn)C與點(diǎn)A恰好在同一水平線上,點(diǎn)A、B、P、C在同一平面內(nèi).

(1)若BP=10m,求居民樓AB的高度;(精確到0.1,≈1.732)

(2)若PC=24m,求C、A之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”期間甲乙兩商場搞促銷活動(dòng),甲商場的方案是:在一個(gè)不透明的箱子里放4個(gè)完全相同的小球,球上分別標(biāo)“0元”“20元”“30元”“50元”,顧客每消費(fèi)滿300元就可從箱子里不放回地摸出2個(gè)球,根據(jù)兩個(gè)小球所標(biāo)金額之和可獲相應(yīng)價(jià)格的禮品;乙商場的方案是:在一個(gè)不透明的箱子里放2個(gè)完全相同的小球,球上分別標(biāo)“5元”“30元”,顧客每消費(fèi)滿100元,就可從箱子里有放回地摸出1個(gè)球,根據(jù)小球所標(biāo)金額可獲相應(yīng)價(jià)格的禮品.某顧客準(zhǔn)備消費(fèi)300.

(1)請用畫樹狀圖或列表法,求出該顧客在甲商場獲得禮品的總價(jià)值不低于50元的概率;

(2)判斷該顧客去哪個(gè)商場消費(fèi)使獲得禮品的總價(jià)值不低于50元機(jī)會(huì)更大?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是半徑為4的內(nèi)接三角形,連接,點(diǎn)分別是的中點(diǎn).

1)試判斷四邊形的形狀,并說明理由;

2)填空:①若,當(dāng)時(shí),四邊形的面積是__________;②若,當(dāng)的度數(shù)為__________時(shí),四邊形是正方形.

查看答案和解析>>

同步練習(xí)冊答案