【題目】如圖,已知AEBF,∠A=60°,點P為射線AE上任意一點(不與點A重合),BC,BD分別平分∠ABP和∠PBF,交射線AE于點C,點D

1)圖中∠CBD= °;

2)當∠ACB=ABD時,∠ABC= °;

3)隨點P位置的變化,圖中∠APB與∠ADB之間的數(shù)量關系始終為 ,請說明理由.

【答案】160 ;(230 ;(3,見解析.

【解析】

1)根據角平分線的定義只要證明∠CBDABF即可;

2)想辦法證明∠ABC=CBP=DBP=DBF即可解決問題;

3)∠APB=2ADB.可以證明∠APB=PBF,∠ADB=DBFPBF

1)∵AEBF,∴∠ABF=180°﹣∠A=120°.

又∵BCBD分別平分∠ABP和∠PBF,∴∠CBD=CBP+DBP(∠ABP+PBFABF=60°.

故答案為:60

2)∵AEBF,∴∠ACB=CBF

又∵∠ACB=ABD,∴∠CBF=ABD,∴∠ABC=ABD﹣∠CBD=CBF﹣∠CBD=DBF,∴∠ABC=CBP=DBP=DBF,∴∠ABCABF=30°.

故答案為:30

3)∠APB=2ADB.理由如下:

AEBF,∴∠APB=PBF,∠ADB=DBF

又∵BD平分∠PBF,∴∠ADB=DBFPBFAPB,即∠APB=2ADB

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列抽樣調查較為科學的是( )

為了解電飯鍋的米飯是否熟了,小明從中任意取出一小匙米飯進行品嘗

為了解全區(qū)域市居民的生活水平,小華在區(qū)政府機關部分抽取了人做調查

為了解某初級中學生的平均體重,小軍在七至九年級各抽名學生進行調查

為了解重慶市2018年的平均氣溫,小琪上網查詢了2018年12月份各天的氣溫情況

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB8cm,長BC10cm.當小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).

(1)求BF的長;(2)求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD的對角線AC=8BD=6,且P、Q、RS分別是AB、BC、CD、DA的中點,則PR2+QS2的值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在RtABC中,BAC=90°,AD是斜邊BC上的高,BE為ABC的角平分線交AC于E,交AD于F,F(xiàn)GBD,交AC于G,過E作EHCD于H,連接FH,下列結論:四邊形CHFG是平行四邊形,AE=CG,FE=FD,四邊形AFHE是菱形,其中正確的是(

A①②③④ B②③④ C①③④ D①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會主義核心價值觀、未成年人基本文明禮儀規(guī)范”的知識競賽活動,成績分為A、B、C、D四個等級,并將收集的數(shù)據繪制了兩幅不完整的統(tǒng)計圖.請你根據圖中所給出的信息,解答下列各題:

(1)求八年一班共有多少人;

(2)補全折線統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中等極為“D”的部分所占圓心角的度數(shù)為________;

(4)若等級A為優(yōu)秀,求該班的優(yōu)秀率.

【答案】(1)60;(2)補圖見解析;(3)108°;(4)5%.

【解析】(1)用B等人數(shù)除以其所占的百分比即可得到總人數(shù);

(2)用求得的總人數(shù)乘以C等所占的百分比即可得到C等的人數(shù),總人數(shù)減去A、C等的人數(shù)即可求得D等的人數(shù);

(3)用D等的人數(shù)除以總人數(shù)乘以360°即可得到答案;

(4)用A等的人數(shù)除以總人數(shù)乘以100%即可得到答案. 解答:

解:(1)30÷50%=60()

∴八年級一共有60人。

(2)等級為“C”的人數(shù)為60×15%=9().

等級為“D”的人數(shù)為603309=18().

補全折線統(tǒng)計圖如下。

(3)等極為“D”的部分所占圓心角的度數(shù)為 ×360°=108°,

故答案為:108°.

(4)該班的優(yōu)秀率×100%=5%.

∴該班的優(yōu)秀率為5%.

點睛:本題考查統(tǒng)計相關知識.利用拆線圖與扇形圖得出相關信息是解題的關鍵.

型】解答
束】
25

【題目】已知拋物線y=ax2+bx+c經過A﹣1,0),B3,0),C03)三點,直線L是拋物線的對稱軸.

1)求拋物線的函數(shù)關系式;

2)求拋物線的頂點坐標;

3)設P點是直線L上的一個動點,當△PAC的周長最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=x2+bx+c的圖象過點A(1,0)和C(0,﹣3)

(1)求這個二次函數(shù)的解析式;

(2)如果這個二次函數(shù)的圖象與x軸的另一個交點為B,求線段AB的長.

(3)在這條拋物線上是否存在一點P,使ABP的面積為8?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A-4)、B2,-4)是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB軸的交點C的坐標及△AOB的面積;

3)求方程的解(直接寫出答案)

4)求不等式的解集(直接寫出答案)

查看答案和解析>>

同步練習冊答案