如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),E(3,0),與y軸交于點(diǎn)B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點(diǎn)坐標(biāo)是(
 
,
 
);
(2)求該拋物線的解析式和B點(diǎn)的坐標(biāo);
(3)設(shè)拋物線頂點(diǎn)是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關(guān)于x軸對(duì)稱,請(qǐng)直接寫出m的值.
分析:(1)因?yàn)閽佄锞與x軸交于點(diǎn)A(-1,0),E(3,0),所以可求出對(duì)稱軸即頂點(diǎn)的橫坐標(biāo),又函數(shù)的最大值是4,所以可求出頂點(diǎn)的縱坐標(biāo)是:4;
(2)設(shè)出函數(shù)的頂點(diǎn)式表達(dá)式為y=a(x-h)2+k,由(1)知h,k,再把A或E點(diǎn)的再把代入可求出a,所以函數(shù)的解析式明確了,B點(diǎn)的坐標(biāo)即函數(shù)x=0時(shí)的函數(shù)值.
(3)把四邊形AEDB的面積分割為S△AOB+S△DHE+S梯形BOHD可得問題答案.
(4)若拋物線y=mx2+nx+p和已知拋物線關(guān)于x軸對(duì)稱,則橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼南喾磾?shù).
解答:精英家教網(wǎng)解:(1)∵拋物線與x軸交于點(diǎn)A(-1,0),E(3,0),
∴拋物線的對(duì)稱軸是x=
3-1
2
=1,
∴頂點(diǎn)的橫坐標(biāo)是:1,
∵函數(shù)的最大值是4.
∴頂點(diǎn)的縱坐標(biāo)是:4,
拋物線的頂點(diǎn)坐標(biāo)是(1,4).

(2)設(shè)拋物線的解析式為y=a(x-h)2+k,
∵拋物線頂點(diǎn)坐標(biāo)為(1,4),
∴y=a(x-1)2+4,
又∵拋物線過點(diǎn)A(-1,0),∴4a+4=0,解得a=-1.
∴y=-x2+2x+3(或y=-(x-1)2+4為所求).
當(dāng)x=0時(shí),y=3,∴B(0,3).

(3)過點(diǎn)D作DH⊥x軸于點(diǎn)H,
∵A(-1,0),B(0,3),∴OA=1,OB=3,
∴S△AOB=
1
2
×OA×OB=
3
2
;
又∵D(1,4),E(3,0),∴DH=4,EH=2
∴S△DHE=
1
2
×DH×HE=4;
又∵B(0,3),D(1,4),∴S梯形BOHD=
1
2
×(OB+DH)×OH=
7
2
;
∴S四邊形AEDB=S△AOB+S梯形BOHD+S△DHE=9.

(4)m=1.
點(diǎn)評(píng):本題考查了求二次函數(shù)的解析式,頂點(diǎn)坐標(biāo),以及特殊的點(diǎn)圍成的圖象的面積,綜合性很強(qiáng),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)點(diǎn)M是直線CD上的一動(dòng)點(diǎn),BM交拋物線于N,是否存在點(diǎn)N是線段BM的中點(diǎn),如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,3),且對(duì)稱軸方程為x=1
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個(gè)交點(diǎn)A(1,0),對(duì)稱軸是x=-1,則該拋物線與x軸的另一交點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在坐標(biāo)平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請(qǐng)直接寫出符合要求的,并在第一象限的點(diǎn)G的坐標(biāo);
(3)將拋物線沿其對(duì)稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?

查看答案和解析>>

同步練習(xí)冊(cè)答案