【題目】重慶李子壩輕軌站穿樓而過成網(wǎng)紅,小明想要測(cè)量輕軌站穿樓時(shí)軌道與大樓連接處距離地面的高度,他站在點(diǎn)處測(cè)得軌道與大樓連接處頂端的仰角為,向前走了米到達(dá)處,再沿著坡度為,長(zhǎng)度為米臺(tái)階到達(dá)處,測(cè)得軌道與大樓連接處頂端的仰角為,已知小明的身高為米,則的高度約為( )米(精確到,參考數(shù)據(jù):,,

A. B. C. D.

【答案】D

【解析】

如圖,過E點(diǎn)作EH⊥MN的延長(zhǎng)線于H,作Rt△BCD,∠D=90°,過點(diǎn)FFG⊥MNG,由題意已知,FG=AE=1.6米,∠HEM=45°,∠GFM=53°,在Rt△BCD中,求得CD,BD的長(zhǎng),從而得到AD,NH的長(zhǎng),然后設(shè)MN長(zhǎng)為x米,在Rt△GMF中,利用三角函數(shù)求得GF關(guān)于x的關(guān)系式,然后在Rt△MHE中,根據(jù)MH=HE,得到關(guān)于x的方程,然后求解方程即可.

解:如圖,過E點(diǎn)作EH⊥MN的延長(zhǎng)線于H,作Rt△BCD,∠D=90°,過點(diǎn)FFG⊥MNG,由題意已知,FG=AE=1.6米,∠HEM=45°,∠GFM=53°,

∵CD:BD=1:2.4,BC=13m,

∴BD=12m,CD=5m

∵AB=1m,AE=1.6m

∴AD=12+1=13m,NH=5﹣1.6=3.4m

設(shè)MN長(zhǎng)為x米,

∵∠GFM=53°,

∴∠GMF=37°,

Rt△GMF中,

=0.75,即GF=0.75·GM=0.75(x﹣1.6),

Rt△MHE中,

∵∠HEM=45°,

∴MH=HE,MN+NH=GF+AD,

x+3.4=0.75(x﹣1.6)+13,

解得x=33.6.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線軸分別交于點(diǎn)A和點(diǎn)BMOB上一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在軸上的點(diǎn)B′處,試求出直線AM的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,a是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點(diǎn)D坐標(biāo),并直接寫出y1y2時(shí)x的取值范圍;

(3)動(dòng)點(diǎn)Px,0)x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)相交于兩點(diǎn),與軸,軸分別交于、兩點(diǎn),已知的面積為.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)連接,,點(diǎn)是線段的中點(diǎn),直線向上平移個(gè)單位將的面積分成兩部分,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2;以此進(jìn)行下去,則正方形A2019B2019C2019D2019的面積為( 。

A.52017B.52018C.52019D.52020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BCx軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),EAD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過點(diǎn)C和點(diǎn)E,過點(diǎn)B的直線y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.

(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);

(2)求直線BF的解析式;

(3)直接寫出y1>y2時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CD、BDE、F、O,連接DE、BF

1)求證:四邊形BEDF是菱形;

2)若AB=16cm,BC=8cm,求四邊形DEBF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案