【題目】如圖,以Rt△ABC的斜邊BC為一邊在△ABC的同側(cè)作正方形BCEF,設正方形的中心為O,連結(jié)A0,如果AB=3,AO=2,那么AC的長等于______.
【答案】2+3.
【解析】在AC上截取CG=AB=3,連接OG,根據(jù)B、A、O、C四點共圓,推出∠ABO=∠ACO,證△BAO≌△CGO,推出OA=OG=2,∠AOB=∠COG,得出等腰直角三角形AOG,根據(jù)勾股定理求出AG,即可求出AC.
解:在AC上截取CG=AB=3,連接OG,
∵四邊形BCEF是正方形,∠BAC=90°,
∴OB=OC,∠BAC=∠BOC=90°,
∴B、A、O、C四點共圓,
∴∠ABO=∠ACO,
在△BAO和△CGO中
BA=CG BA=CG,∠BAO=∠GCO,OB=OC,
∴△BAO≌△CGO(SAS),
∴OA=OG=2,∠AOB=∠COG,
∵∠BOC=∠COG+∠BOG=90°,
∴∠AOG=∠AOB+∠BOG=90°,
即△AOG是等腰直角三角形,
由勾股定理得:AG=,
即AC=2+3.
故答案是:2+3.
“點睛”本題主要考查對勾股定理,正方形的性質(zhì),直角三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和掌握,能熟練地運用這些性質(zhì)進行推理和計算是解此題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣mx﹣3(m>0)交y軸于點C,CA⊥y軸,交拋物線于點A,點B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點E,交AO的延長線于點D,BE=2AC.
(1)用含m的代數(shù)式表示BE的長.
(2)當m=時,判斷點D是否落在拋物線上,并說明理由.
(3)若AG∥y軸,交OB于點F,交BD于點G.
①若△DOE與△BGF的面積相等,求m的值.
②連結(jié)AE,交OB于點M,若△AMF與△BGF的面積相等,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點A和點B(3,0),與軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線在軸下方上的動點,過點M作MN//軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當MN取最大值時,在拋物線的對稱軸上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若a2+2ab=﹣10,b2+2ab=16,則多項式a2+4ab+b2與a2﹣b2的值分別為( )
A. 6,26 B. ﹣6,26 C. 6,﹣26 D. ﹣6,﹣26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種感冒病毒的直徑為0.0000000031米,用科學記數(shù)法表示為 ( )
A. 3.1×10-8米B. 3.1×10-9米C. 3.1×109米D. 3.1×108米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方程(x﹣1)2=0的解是( 。
A. x1=1,x2=﹣1 B. x1=x2=1 C. x1=x2=﹣1 D. x1=1,x2=﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若P(m,n)與Q(n,m)表示同一個點,那么這個點一定在( )
A. 第二、四象限 B. 第一、三象限 C. 平行于x軸的直線上 D. 平行于y軸的直線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com