【題目】如圖,菱形EFGH的三個頂點E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當AH=DG時,求證:菱形EFGH為正方形.
【答案】詳見解析
【解析】
試題分析:(1)連接GE,根據正方形的性質和平行線的性質得到∠AEG=∠CGE,根據菱形的性質和平行線的性質得到∠HEG=∠FGE,解答即可;
(2)證明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,證明∠GHE=90°,根據正方形的判定定理證明.
證明:(1)連接GE,
∵AB∥CD,
∴∠AEG=∠CGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠HEA=∠CGF;
(2)∵四邊形ABCD是正方形,
∴∠D=∠A=90°,
∵四邊形EFGH是菱形,
∴HG=HE,
在Rt△HAE和Rt△GDH中,
,
∴Rt△HAE≌Rt△GDH(HL),
∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∴菱形EFGH為正方形;
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
分解因式:x2+2x-3
解:原式=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此種方法抓住了二次項和一次項的特點,然后加一項,使這三項成為完全平方式,我們把這種分解因式的方法叫配方法.請仔細體會配方法的特點,然后嘗試用配方法解決下列問題:
(1)分解因式:m2-4mn+3n2;
(2)無論m取何值,代數(shù)式m2-3m+2015總有一個最小值,請你嘗試用配方法求出它的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據相關報道,截止到今年四月,我國已完成5.78萬個農村教學點的建設任務.5.78萬可用科學記數(shù)法表示為( )
A.5.78×103
B.57.8×103
C.0.578×104
D.5.78×104
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織初一、初二學生舉行“四城同創(chuàng)”宣傳活動,從學校坐車出發(fā),先上坡到達A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度保持不變,在A地仍要宣傳8分鐘,則他們從B地返回學校用的時間是( 。
A. 48分鐘 B. 45.2分鐘 C. 46分鐘 D. 33分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個多項式減去x2-2y2等于x2-2y2 , 則這個多項式是( )
A.-2x2+2y2
B.x2-2y2
C.2x2-4y2
D.x2+2y2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com