【題目】某發(fā)電廠共有6臺發(fā)電機發(fā)電,每臺的發(fā)電量為300萬千瓦/月.該廠計劃從今年7月開始到年底,對6臺發(fā)電機各進行一次改造升級.每月改造升級1臺,這臺發(fā)電機當月停機,并于次月再投入發(fā)電,每臺發(fā)電機改造升級后,每月的發(fā)電量將比原來提高20%.已知每臺發(fā)電機改造升級的費用為20萬元.將今年7月份作為第1個月開始往后算,該廠第x(x是正整數(shù))個月的發(fā)電量設為y(萬千瓦).
(1)求該廠第2個月的發(fā)電量及今年下半年的總發(fā)電量;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)如果每發(fā)1千瓦電可以盈利0.04元,那么從第1個月開始,至少要到第幾個月,這期間該廠的發(fā)電盈利扣除發(fā)電機改造升級費用后的盈利總額ω1(萬元),將超過同樣時間內(nèi)發(fā)電機不作改造升級時的發(fā)電盈利總額ω2(萬元)?
【答案】(1)該廠第2個月的發(fā)電量為1560萬千瓦;今年下半年的總發(fā)電量為9900萬千瓦;(2)2160.(3)17個月
【解析】
試題(1)由題意可以知道第1個月的發(fā)電量是300×5千瓦,第2個月的發(fā)電量為300×4+300(1+20%),第3個月的發(fā)電量為300×3+300×2×(1+20%),第4個月的發(fā)電量為300×2+300×3×(1+20%),第5個月的發(fā)電量為300×1+300×4×(1+20%),第6個月的發(fā)電量為300×5×(1+20%),將6個月的總電量加起來就可以求出總電量.
(2)由總發(fā)電量=各臺機器的發(fā)電量之和根據(jù)(1)的結(jié)論設y與x之間的關(guān)系式為y=kx+b建立方程組求出其解即可.
(3)由總利潤=發(fā)電盈利﹣發(fā)電機改造升級費用,分別表示出ω1,ω2,再根據(jù)條件建立不等式求出
其解即可.
試題解析:解:(1)由題意,得
第2個月的發(fā)電量為:300×4+300(1+20%)=1560千瓦,
今年下半年的總發(fā)電量為:
300×5+1560+300×3+300×2×(1+20%)+300×2+300×3×(1+20%)+300×1+300×4×(1+20%)+300×5×(1+20%)
=1500+1560+1620+1680+1740+1800=9900.
答:該廠第2個月的發(fā)電量為1560千瓦;今年下半年的總發(fā)電量為9900千瓦.
(2)設y與x之間的關(guān)系式為y=kx+b,由題意,得
,解得:.
∴y關(guān)于x的函數(shù)關(guān)系式為y=60x+1440(1≤x≤6).
(3)設到第n個月時ω1>ω2,
當n=6時,ω1=9900×0.04﹣20×6=276,ω2=300×6×6×0.04=432,ω1>ω2不符合.
∴n>6.
∴ω1=[9900+360×6(n﹣6)]×0.04﹣20×6=86.4n﹣240,ω2=300×6n×0.04=72n.
當ω1>ω2時,86.4n﹣240>72n,解之得n>16.7,∴n=17.
答:至少要到第17個月ω1超過ω2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB=4,點E,F分別是BC,AD的中點.
(1)求證:△ABE≌△CDF;
(2)當四邊形AECF為菱形時,求出該菱形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分線交于點O1稱為第1次操作,作∠O1DC、∠O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、∠O2CD的平分線交于點O3稱為第3次操作,…,則第5次操作后∠CO5D的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點P是的邊OB上的一點.
(1)過點P畫OB的垂線,交OA于點C;過點P畫OA的垂線,垂足為H;
(2)線段PH的長度是點P到直線__________的距離;
(3)線段__________的長度是點C到直線OB的距離;
(4)線段PC、PH、OC這三條線段大小關(guān)系是__________(用“<”號連接).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點E.
(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4 ,AE=2,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是( )
A.ac>0
B.當x>1時,y隨x的增大而增大
C.2a+b=1
D.方程ax2+bx+c=0有一個根是x=3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,CE、CF分別是△ABC的內(nèi)外角平分線,過點A作CE、CF的垂線,垂足分別為E、F.
(1)求證:四邊形AECF是矩形;
(2)當△ABC滿足什么條件時,四邊形AECF是正方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)0﹣(﹣2)
(2)(+10)+(﹣14)
(3)5.6+(﹣0.9)+4.4+(﹣8.1)
(4)1﹣+﹣+
(5)(﹣0.5)﹣(﹣3)+2.75﹣(+7).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com