【題目】如圖,將一邊長AB為4的矩形紙片折疊,使點D與點B重合,折痕為EF,若EF=2,則矩形的面積為( 。
A.32B.28C.30D.36
【答案】A
【解析】
連接BD交EF于O,由折疊的性質(zhì)可推出BD⊥EF,BO=DO,然后證明△EDO≌△FBO,得到OE=OF,設(shè)BC=x,利用勾股定理求BO,再根據(jù)△BOF∽△BCD,列出比例式求出x,即可求矩形面積.
解:連接BD交EF于O,如圖所示:
∵折疊紙片使點D與點B重合,折痕為EF,
∴BD⊥EF,BO=DO,
∵四邊形ABCD是矩形,
∴AD∥BC
∴∠EDO=∠FBO
在△EDO和△FBO中,
∵∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°
∴△EDO≌△FBO(ASA)
∴OE=OF=EF=,
∵四邊形ABCD是矩形,
∴AB=CD=4,∠BCD=90°,
設(shè)BC=x,
BD==,
∴BO=,
∵∠BOF=∠C=90°,∠CBD=∠OBF,
∴△BOF∽△BCD,
∴=,
即:=,
解得:x=8,
∴BC=8,
∴S矩形ABCD=ABBC=4×8=32,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長AB=8,E為平面內(nèi)一動點,且AE=4,F為CD上一點,CF=2,連接EF,ED,則2EF+ED的最小值為( 。
A.12B.12C.12D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在“五一”假期間參加一項社會調(diào)查活動,在他所居住小區(qū)的600個家庭中,隨機調(diào)查了50個家庭人均月收入情況,并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖(收入取整數(shù),單位:元).
分 組 | 頻 數(shù) | 頻 率 |
1000~1200 | 3 | 0.060 |
1200~1400 | 12 | 0.240 |
1400~1600 | 18 | 0.360 |
1600~1800 | 0.200 | |
1800~2000 | 5 | |
2000~2200 | 2 | 0.040 |
合計 | 50 | 1.000 |
請你根據(jù)以上提供的信息,解答下列問題:
⑴ 補全頻數(shù)分布表和頻數(shù)分布直方圖;
⑵ 這50個家庭人均月收入的中位數(shù)落在 小組;
⑶ 請你估算該小區(qū)600個家庭中人均月收入較低(不足1400元)的家庭個數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進一批A型車和B型車共60輛,A型車的進貨價為每輛1100元,銷售價與(1)相同;B型車的進貨價為每輛1400元,銷售價為每輛2000元,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進貨才能使這批車獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中為了提高學(xué)生綜合素質(zhì),決定開設(shè)以下校本課程:.軟筆書法,.經(jīng)典誦讀,.鋼筆畫,.花樣跳繩,為了了解學(xué)生最喜歡哪一項校本課程,隨機抽取了部分學(xué)生進行了調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共_____人;
(2)請將條形統(tǒng)計補充完整;
(3)在平時的花樣跳繩的課堂學(xué)習(xí)中,甲、乙、丙三人表現(xiàn)優(yōu)秀,現(xiàn)決定從這三名同學(xué)中任選兩名參加全區(qū)綜合素質(zhì)展示,求恰好同時選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于A(-1,3),B(3,)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求一次函數(shù)及反比例函數(shù)的解析式;
(2)若點P在直線上,且S△ACP=2S△BDP,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租貿(mào)公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時,公司的每日收益可達到10120元?
(2)公司領(lǐng)導(dǎo)希望日收益達到10160元,你認為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由,
(3)汽車日常維護要定費用,已知外租車輛每日維護費為100元未租出的車輛維護費為50元,當(dāng)租金為多少元時,公司的利潤恰好為5500元?(利潤=收益﹣維護費)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學(xué)校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費用的租車方案,并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=mx+n與反比例函數(shù)y2= (x>0)的圖象分別交于點A(a,4)和點B(8,1),與坐標軸分別交于點C和點D.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)觀察圖象,當(dāng)x>0時,直接寫出y1>y2的解集;
(3)若點P是x軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com