【題目】如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC
(1)求證:四邊形ACDE為平行四邊形;
(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.
【答案】(1)證明見解析;(2)4.
【解析】
(1)已知四邊形 ABCD 是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形 ACDE 是平行四邊形;(2)連接 EC,易證△BEC 是直角三角形,解直角三角形即可解決問題.
(1)證明:∵四邊形 ABCD 是平行四邊形,
∴AB∥CD,AB=CD,
∵AE=AB,
∴AE=CD,∵AE∥CD,
∴四邊形 ACDE 是平行四邊形.
(2)如圖,連接 EC.
∵AC=AB=AE,
∴△EBC 是直角三角形,
∵cosB==,BE=6,
∴BC=2,
∴EC===4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點,過圓上一點C作⊙O的切線CF,分別交AD、BE于點M、N,連接AC、CB,若∠ABC=30°,則AM= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形.
(1)如圖(1),點E在線段AB上,點D在射線CB上,且ED=EC.將△BCE繞點C順時針旋轉(zhuǎn)60°至△ACF,連接EF.猜想線段AB,DB,AF之間的數(shù)量關(guān)系;
(2)點E在線段BA的延長線上,其它條件與(1)中一致,請在圖(2)的基礎(chǔ)上將圖形補充完整,并猜想線段AB,DB,AF之間的數(shù)量關(guān)系;
(3)請選擇(1)或(2)中的一個猜想進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,,,,,是上一點,是延長線上一點,且.
(1)試說明:;
(2)在圖中,若點在上,且,試猜想、、之間的數(shù)量關(guān)系,并證明所歸納結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD的邊AB=3,AD=8,頂點A、D分別在x軸、y軸上滑動,在矩形滑動過程中,點C到原點O距離的最大值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出如下定義:對于⊙O 的弦 MN 和⊙O 外一點 P(M,O,N 三點不共線,且點 P,O 在直線 MN 的異側(cè)),當∠MPN+∠MON=180°時,則稱點 P 是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點.圖 1 是點 P 為線段 MN 關(guān)于點 O 的關(guān)聯(lián)點的示意圖.
在平面直角坐標系 xOy 中,⊙O 的半徑為 1.
(1)如圖 2,已知 M(,),N( ,﹣),在 A(1,0),B(1,1),C(,0)三點中,是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點的是哪個點;
(2)如圖 3,M(0,1),N(,﹣),點 D 是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點.
①求∠MDN 的大小;
②在第一象限內(nèi)有一點 E(m,m),點 E 是線段 MN 關(guān)于點 O 的關(guān)聯(lián)點,判斷△MNE 的形狀,并直接寫出點 E 的坐標;
③點 F 在直線 y=﹣x+2 上,當∠MFN≥∠MDN 時,求點 F 的橫坐標 x 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB∽Rt△DOC,∠ABO=30°,∠AOB=∠COD=90°,M為OA的中點,OA=4,將△COD繞點O旋轉(zhuǎn)一周,直線AD,CB交于點P,連接MP,則MP的最小值是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】、兩地相距160千米,一輛公共汽車從地出發(fā),開往地,2小時后,又從地同方向開出一輛小汽車,小汽車的速度是公共汽車的3倍,結(jié)果小汽車比公共汽車早到40分鐘到達地,求兩種車的速度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com