【題目】如圖,正方形ABCD的邊長為8,M是AB的中點(diǎn),P是BC邊上的動(dòng)點(diǎn),連結(jié)PM,以點(diǎn)P為圓心,PM長為半徑作⊙P.
(1)當(dāng)BP= 時(shí),△MBP~△DCP;
(2)當(dāng)⊙P與正方形ABCD的邊相切時(shí),求BP的長;
(3)設(shè)⊙P的半徑為x,請(qǐng)直接寫出正方形ABCD中恰好有兩個(gè)頂點(diǎn)在圓內(nèi)的x的取值范圍.
【答案】(1);(2)3或;(3)
【解析】
(1)設(shè)BP=a,則PC=8-a,由△MBP~△DCP知,代入計(jì)算可得;
(2)分別求出⊙P與邊CD相切時(shí)和⊙P與邊AD相切時(shí)BP的長即可得;
(3)①當(dāng)PM=5時(shí),⊙P經(jīng)過點(diǎn)M,點(diǎn)C;②當(dāng)⊙P經(jīng)過點(diǎn)M、點(diǎn)D時(shí),由PC2+DC2=BM2+PB2,可求得BP=7,繼而知.據(jù)此可得答案.
(1)設(shè)BP=a,則PC=8-a,
∵AB=8,M是AB中點(diǎn),
∴AM=BM=4,
∵△MBP~△DCP,
∴,即,
解得,
故答案為:.
(2)如圖1,當(dāng)⊙P與邊CD相切時(shí),
設(shè)PC=PM=x,
在Rt△PBM中,∵PM2=BM2+PB2,
∴x2=42+(8-x)2,
∴x=5,
∴PC=5,BP=BC-PC=8-5=3.
如圖2,當(dāng)⊙P與邊AD相切時(shí),
設(shè)切點(diǎn)為K,連接PK,
則PK⊥AD,四邊形PKDC是矩形.
∴PM=PK=CD=2BM,
∴BM=4,PM=8,
在Rt△PBM中,.
綜上所述,BP的長為3或.
(3)如圖1,當(dāng)PM=5時(shí),⊙P經(jīng)過點(diǎn)M,點(diǎn)C;
如圖3,當(dāng)⊙P經(jīng)過點(diǎn)M、點(diǎn)D時(shí),
∵PC2+DC2=BM2+PB2,
∴42+BP2=(8-BP)2+82,
∴BP=7,
∴.
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC.邊長為3.點(diǎn)D為AC上一點(diǎn),且CD=1.點(diǎn)E為邊AB上不與A、B重合的一個(gè)動(dòng)點(diǎn),連接DE,以DE為對(duì)稱軸,折疊△AED.點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,當(dāng)點(diǎn)F落在等邊△ABC的邊上時(shí),AE的長為______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求證:四邊形ABCD是菱形;
(2)過點(diǎn)D作DE⊥BD,交BC的延長線于點(diǎn)E,若BC=5,BD=8,求四邊形ABED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年我國個(gè)人所得稅征收辦法最新規(guī)定:月收入不超過元的部分不收稅;月收入超過元但不超過元的部分征收的所得稅;月收入超過元但不超過元的部分征收的所得稅國家特別規(guī)定月收入指?jìng)(gè)人工資收入扣除專項(xiàng)附加費(fèi)后的實(shí)際收入(專項(xiàng)附加費(fèi)就是子女教育費(fèi)用、住房貸款利息費(fèi)用、租房的租金、贍養(yǎng)老人、大病醫(yī)療費(fèi)用等費(fèi)用).如某人月工資收入元,專項(xiàng)附加費(fèi)支出元,他應(yīng)繳納個(gè)人所得稅為:(元).
(1)當(dāng)月收入超過元而又不超過元時(shí),寫出應(yīng)繳納個(gè)人所得稅(元)與月收入(元)之間的關(guān)系式;
(2)如果某人當(dāng)月專項(xiàng)附加費(fèi)支出元,繳納個(gè)人所得稅元,那么此人本月工資是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在銳角三角形ABC中,AB=8,AC=5,BC=6,沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周長是7,④,⑤.其中正確的個(gè)數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宜傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,將獲得的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(注;A為可回收物,B為廚佘垃圾,C為有害垃圾,D為其它垃圾)
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共有 噸的生活垃圾;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,D所對(duì)應(yīng)的圓心角度數(shù)是 .
(4)假設(shè)該城市每月產(chǎn)生的生活垃圾為5000噸,且全部分類處理,請(qǐng)估計(jì)每月產(chǎn)生的有害垃圾多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn),,,均在格點(diǎn)上,點(diǎn)是在直線上的動(dòng)點(diǎn),連,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).
(1)在圖①中,當(dāng)(點(diǎn)在點(diǎn)的左側(cè))時(shí),計(jì)算的值等于______.
(2)當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D②所示的網(wǎng)格中,用無刻度的直尺畫出點(diǎn),并簡(jiǎn)要說明點(diǎn)的位置是如何找到的.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象經(jīng)過點(diǎn)(1,-6).
(1)求m的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記直線與反比例函數(shù)的圖象圍成的區(qū)域?yàn)?/span>W(不含邊界).若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦朗誦比賽,比賽結(jié)束后,對(duì)學(xué)生的成績進(jìn)行了統(tǒng)計(jì).繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)參加這次比賽的人數(shù)為 ,圖①中的值為 ;
(2)求統(tǒng)計(jì)的這組學(xué)生朗誦比賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com