【題目】某校為了更好地開展球類運(yùn)動(dòng),體育組決定用1600元購進(jìn)足球8個(gè)和籃球14個(gè),并且籃球的單價(jià)比足球的單價(jià)多20元,請(qǐng)解答下列問題:
(1)求出足球和籃球的單價(jià);
(2)若學(xué)校欲用不超過3240元,且不少于3200元再次購進(jìn)兩種球50個(gè),求出有哪幾種購買方案?
(3)在(2)的條件下,若已知足球的進(jìn)價(jià)為50元,籃球的進(jìn)價(jià)為65元,則在第二次購買方案中,哪種方案商家獲利最多?
【答案】
(1)解:設(shè)足球的單價(jià)為x元,則籃球的單價(jià)為(x+20)元,
根據(jù)題意,得8x+14(x+20)=1600,
解得:x=60,x+20=80.
即足球的單價(jià)為60元,則籃球的單價(jià)為80元;
(2)解:設(shè)購進(jìn)足球y個(gè),則購進(jìn)籃球(50﹣y)個(gè).
根據(jù)題意,得 ,
解得: ,
∵y為整數(shù),
∴y=38,39,40.
當(dāng)y=38,50﹣y=12;
當(dāng)y=39,50﹣y=11;
當(dāng)y=40,50﹣y=10.
故有三種方案:
方案一:購進(jìn)足球38個(gè),則購進(jìn)籃球12個(gè);
方案二:購進(jìn)足球39個(gè),則購進(jìn)籃球11個(gè);
方案三:購進(jìn)足球40個(gè),則購進(jìn)籃球10個(gè);
(3)解:商家售方案一的利潤:38(60﹣50)+12(80﹣65)=560(元);
商家售方案二的利潤:39(60﹣50)+11(80﹣65)=555(元);
商家售方案三的利潤:40(60﹣50)+10(80﹣65)=550(元).
故第二次購買方案中,方案一商家獲利最多
【解析】(1)設(shè)足球的單價(jià)為x元,則籃球的單價(jià)為(x+20)元,則根據(jù)所花的錢數(shù)為1600元,可得出方程,解出即可;(2)根據(jù)題意所述的不等關(guān)系:不超過3240元,且不少于3200元,等量關(guān)系:兩種球共50個(gè),可得出不等式組,解出即可;(3)分別求出三種方案的利潤,繼而比較可得出答案.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解九年級(jí)學(xué)生的體能,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試的結(jié)果分為A、B、C、D四個(gè)等級(jí),并根據(jù)測(cè)試成績(jī)繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次抽樣調(diào)查的樣本容量是多少?B等級(jí)的有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,C等級(jí)對(duì)應(yīng)扇形的圓心角為多少度?
(3)該校九年級(jí)學(xué)生有1500人,估計(jì)D等級(jí)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有三點(diǎn)A(2,2),B(5,2),C(5,)
(1)請(qǐng)確定一個(gè)點(diǎn)D,使四邊形ABCD為長(zhǎng)方形,寫出點(diǎn)D的坐.
(2)求這個(gè)四邊形的面積(精確到0.01).
(3)將這個(gè)四邊形向右平移2個(gè)單位,再向下平移個(gè)單位,求平移后四個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在一次廣播操比賽中,初二 (1)班、初二(2)班、初二(3)班的各項(xiàng)得分如下:
服裝統(tǒng)一 | 動(dòng)作整齊 | 動(dòng)作準(zhǔn)確 | |
初二(1)班 | |||
初二(2)班 | |||
初二(3)班 |
(1)填空:根據(jù)表中提供的信息,在服裝統(tǒng)一方面,三個(gè)班得分的平均數(shù)是________;在動(dòng)作整齊方面三個(gè)班得分的眾數(shù)是________;在動(dòng)作準(zhǔn)確方面最有優(yōu)勢(shì)的是________班.
(2)如果服裝統(tǒng)一、動(dòng)作整齊、動(dòng)作準(zhǔn)確三個(gè)方面的重要性之比為,那么這三個(gè)班的排名順序怎樣?為什么?
(3)在(2)的條件下,你對(duì)三個(gè)班級(jí)中排名最靠后的班級(jí)有何建議?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,三邊分別為a、b、c,其中a=4,b、c恰好是方程的兩個(gè)實(shí)數(shù)根,則△ABC的周長(zhǎng)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4, ),B(﹣1,2)是一次函數(shù)y=kx+b與反比例函數(shù) (m≠0,m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,過邊AB上一點(diǎn)N作AB的垂線交BC于點(diǎn)M.
(1)如圖1,若∠A=40°,求∠NMB的度數(shù).
(2)如圖2,若∠A=70°,求∠NMB的度數(shù).
(3)你可以再分別給出幾個(gè)∠A(∠A為銳角)的度數(shù),你發(fā)現(xiàn)規(guī)律了嗎?寫出當(dāng)∠A為銳角時(shí),你猜想出的規(guī)律,并進(jìn)行證明.
(4)當(dāng)∠A為直角、鈍角時(shí),是否還有(3)中的結(jié)論(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀材料)
∵<<,即2<<3,
∴1<<2.
∴﹣1的整數(shù)部分為1.
∴﹣1的小數(shù)部分為﹣2
(解決問題)的小數(shù)部分是多少;
我們還可以用以下方法求一個(gè)無理數(shù)的近似值.
閱讀理解:求的近似值.
解:設(shè)=10+x,其中0<x<1,則107=(10+x)2,即107=100+20x+x2.
因?yàn)?<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.35,即的近似值為10.35.
理解應(yīng)用:利用上面的方法求的近似值(結(jié)果精確到0.01).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com