【題目】為迎接2020年第35屆全國青少年科技創(chuàng)新大賽,某學校舉辦了A:機器人;B:航模;C:科幻繪畫;D:信息學;E:科技小制作等五項比賽活動(每人限報一項),將各項比賽的參加人數(shù)繪制成如圖兩幅不完整的統(tǒng)計圖.

根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次參加比賽的學生人數(shù)是_________名;

2)把條形統(tǒng)計圖補充完整;

3)求扇形統(tǒng)計圖中表示機器人的扇形圓心角的度數(shù);

4)在C組最優(yōu)秀的3名同學(1名男生2名女生)和E組最優(yōu)秀的3名同學(2名男生1名女生)中,各選1名同學參加上一級比賽,利用樹狀圖或表格,求所選兩名同學中恰好是1名男生1名女生的概率.

【答案】180;(2)見解析;(372;(4)圖表見解析,

【解析】

1)根據(jù)題目中已知B的占比和人數(shù)已知,可求出總?cè)藬?shù);

2)用總?cè)藬?shù)減去其他人數(shù)可求出D的人數(shù),然后補全條圖即可;

3)先算出A的占比,再用占比乘以360°即可;

4)根據(jù)列表法進行求解即可;

(1)由題可知:(人),

∴參加學生的人數(shù)是80人;

2)由(1)可得:D的人數(shù)為,畫圖如下:

3)由(1)可得,A的占比是,

4)列表如下:

C

C1

C2

E1

C男,E1

C1,E1

C2,E1

E2

C男,E2

C1,E2

C2,E2

E

C男,E女)

C1,E女)

C2E女)

得到所有等可能的情況有9種,

其中滿足條件的有5種:(C1E1),(C2,E1),(C1,E2),C2E2),(C男,E女)

所以所選兩名同學中恰好是1名男生1名女生的概率是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2bx5a,b是常數(shù),a0)的圖象與x軸交于點A(-10)和點B5,0).動直線ytt為常數(shù))與拋物線交于不同的兩點P、Q(點PQ的左側(cè)).

1)求拋物線的解析式;

2)動直線yty軸交于點C,若CQ=3CP,求t的值;

3)將拋物線yax2bx5x軸下方的部分沿x軸翻折,若動直線yt與翻折后的圖像交于點M、N,點M、N能否是線段PQ的三等分點?若能,求PQ的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EABCD的內(nèi)部,AFBEDFCE

1)求證BCEADF;

2)若ABCD的面積為96cm2,求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+ca0)與x軸交于A﹣2,0)、B40)兩點,與y軸交于點C,且OC=2OA

1)試求拋物線的解析式;

2)直線y=kx+1k0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標;

3)在(2)的條件下,點Qx軸上的一個動點,點N是坐標平面內(nèi)的一點,是否存在這樣的點Q、N,使得以P、D、QN四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,相交于點O,過點B于點F,交于點M,過點D于點E,交于點N,連接.則下列結(jié)論:

;②;

;④當時,四邊形是菱形.

其中,正確結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰邊與正方形邊重合,從如圖所示位置水平向右勻速運動,直到點落在邊上.設,運動過程中與正方形的重合部分面積為,則能反映的函數(shù)關系的圖象是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若拋物線與直線圍成的封閉圖形內(nèi)部(不包括邊界)有個整點(橫縱坐標均為整數(shù)),則一次函數(shù)的圖像為(


A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,直徑AB4,直線EF經(jīng)過點CADEF于點D,∠ACD=∠B

1)求證:EF是⊙O的切線;

2)若AD1,求BC的長;

3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABE,AMBCM,交CDN,連ADAB=,ON=1,則⊙O的半徑長為_____________


查看答案和解析>>

同步練習冊答案