【題目】為迎接2020年第35屆全國青少年科技創(chuàng)新大賽,某學校舉辦了A:機器人;B:航模;C:科幻繪畫;D:信息學;E:科技小制作等五項比賽活動(每人限報一項),將各項比賽的參加人數(shù)繪制成如圖兩幅不完整的統(tǒng)計圖.
根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次參加比賽的學生人數(shù)是_________名;
(2)把條形統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中表示機器人的扇形圓心角的度數(shù);
(4)在C組最優(yōu)秀的3名同學(1名男生2名女生)和E組最優(yōu)秀的3名同學(2名男生1名女生)中,各選1名同學參加上一級比賽,利用樹狀圖或表格,求所選兩名同學中恰好是1名男生1名女生的概率.
【答案】(1)80;(2)見解析;(3)72;(4)圖表見解析,
【解析】
(1)根據(jù)題目中已知B的占比和人數(shù)已知,可求出總?cè)藬?shù);
(2)用總?cè)藬?shù)減去其他人數(shù)可求出D的人數(shù),然后補全條圖即可;
(3)先算出A的占比,再用占比乘以360°即可;
(4)根據(jù)列表法進行求解即可;
(1)由題可知:(人),
∴參加學生的人數(shù)是80人;
(2)由(1)可得:D的人數(shù)為,畫圖如下:
(3)由(1)可得,A的占比是,
∴.
(4)列表如下:
C男 | C女1 | C女2 | |
E男1 | (C男,E男1) | (C女1,E男1) | (C女2,E男1) |
E男2 | (C男,E男2) | (C女1,E男2) | (C女2,E男2) |
E女 | (C男,E女) | (C女1,E女) | (C女2,E女) |
得到所有等可能的情況有9種,
其中滿足條件的有5種:(C女1,E男1),(C女2,E男1),(C女1,E男2),C女2,E男2),(C男,E女)
所以所選兩名同學中恰好是1名男生1名女生的概率是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx-5(a,b是常數(shù),a0)的圖象與x軸交于點A(-1,0)和點B(5,0).動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q(點P在Q的左側(cè)).
(1)求拋物線的解析式;
(2)動直線y=t與y軸交于點C,若CQ=3CP,求t的值;
(3)將拋物線y=ax2+bx-5在x軸下方的部分沿x軸翻折,若動直線y=t與翻折后的圖像交于點M、N,點M、N能否是線段PQ的三等分點?若能,求PQ的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在ABCD的內(nèi)部,AF∥BE,DF∥CE.
(1)求證BCE≌ADF;
(2)若ABCD的面積為96cm2,求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點,與y軸交于點C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標;
(3)在(2)的條件下,點Q是x軸上的一個動點,點N是坐標平面內(nèi)的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,相交于點O,過點B作交于點F,交于點M,過點D作交于點E,交于點N,連接.則下列結(jié)論:
①;②;
③;④當時,四邊形是菱形.
其中,正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰的邊與正方形的邊重合,.從如圖所示位置水平向右勻速運動,直到點落在邊上.設,運動過程中與正方形的重合部分面積為,則能反映與的函數(shù)關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若拋物線與直線圍成的封閉圖形內(nèi)部(不包括邊界)有個整點(橫縱坐標均為整數(shù)),則一次函數(shù)的圖像為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,直徑AB=4,直線EF經(jīng)過點C,AD⊥EF于點D,∠ACD=∠B.
(1)求證:EF是⊙O的切線;
(2)若AD=1,求BC的長;
(3)在(2)的條件下,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.AB=,ON=1,則⊙O的半徑長為_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com