【題目】如圖,等腰梯形ABCD放置在平面坐標系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經過點C.

(1)求點C的坐標和反比例函數(shù)的解析式;

(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?

【答案】(1)y=2)恰好落在雙曲線上

【解析】(1)過點C作CE⊥AB于點E,

∵四邊形ABCD是等腰梯形,

∴AD=BC,DO=CE,

∴△AOD≌△BEC,∴AO=BE=2,

∵BO=6,∴DC=OE=4,

∴C(4,3);

設反比例函數(shù)的解析式y(tǒng)=(k≠0),

根據(jù)題意得:3=,

解得k=12;

∴反比例函數(shù)的解析式y(tǒng)=;

(2)將等腰梯形ABCD向上平移2個單位后得到梯形A′B′C′D′得點B′(6,2),

故當x=6時,y==2,即點B′恰好落在雙曲線上.

(1)C點的縱坐標與D的縱坐標相同,過點C作CE⊥AB于點E,則△AOD≌△BEC,即可求得BE的長度,則OE的長度即可求得,即可求得C的橫坐標,然后利用待定系數(shù)法即可求得反比例函數(shù)的解析式;

(2)將等腰梯形ABCD向上平移2個單位后,點B向上平移2個單位長度得到的點的坐標即可得到,代入函數(shù)解析式判斷即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過AABx軸,截取AB=OA(BA右側),連接OB,交反比例函數(shù)y=的圖象于點P.

(1)求反比例函數(shù)y=的表達式;

(2)求點B的坐標;

(3)求OAP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個數(shù)為(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩點在反比例函數(shù)yx0)的圖象上,其中k0ACy軸于點C,BDx軸于點D,且AC1

1)若k2,則AO的長為   ,△BOD的面積為   ;

2)若點B的橫坐標為k,且k1,當AOAB時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內,y隨x的增大而減小;②若點B的橫坐標為﹣3,則C點的坐標為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例y(x0)的圖象上的一個動點,連接OA,OBOA,且OB2OA,那么經過點B的反比例函數(shù)圖象的表達式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將DCE沿DE對折至DFE,延長EF交邊AB于點G,連接DGBF,給出下列結論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④SBEF=.其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EAD的中點,EFECABFABAE.問:AEFEFC是否相似?若相似,證明你的結論;若不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上.

1)求證:△AEF∽△ABC

2)求這個正方形零件的邊長;

3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?

查看答案和解析>>

同步練習冊答案