【題目】已知拋物線的頂點(diǎn)為(1,-4),且經(jīng)過點(diǎn)B(3,0).
(Ⅰ)求該拋物線的解析式及拋物線與x軸的另一個交點(diǎn)A的坐標(biāo);
(Ⅱ)點(diǎn)P(m,t)為拋物線上的一個動點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)為P′.
①當(dāng)點(diǎn)P′落在該拋物線上時,求m的值;
②當(dāng)點(diǎn)P′落在第二象限內(nèi),P′A2取得最大值時,求m的值.
【答案】(Ⅰ)y=x2-2x-3,點(diǎn)A的坐標(biāo)為(-1,0);(Ⅱ)①m1=,m2=-. ② m=1.
【解析】試題分析: 由頂點(diǎn)坐標(biāo)可以設(shè)拋物線的解析式為: 把點(diǎn)的坐標(biāo)代入即可求出拋物線的解析式,進(jìn)而求得拋物線與軸的交點(diǎn)坐標(biāo).
(2)①由對稱可表示出點(diǎn)的坐標(biāo),再由和都在拋物線上,可得到關(guān)于的方程,可求得的值;
②由點(diǎn)在第二象限,可求得的取值范圍,利用兩點(diǎn)間距離公式可用表示出,再由點(diǎn)在拋物線上,可用消去,整理可得到關(guān)于的二次函數(shù),利用二次函數(shù)的性質(zhì)可求得其取得最大值時的值,則可求得的值.
試題解析: 設(shè)拋物線的解析式為 代入點(diǎn),
∴拋物線的解析式為:
∴點(diǎn)的坐標(biāo)為
(Ⅱ)①由P(m,t)在拋物線上可得t=m22m3,
∵點(diǎn)P′與P關(guān)于原點(diǎn)對稱,
∴P′(m,t),
∵點(diǎn)P′落在拋物線上,
即
解得或
②②由題意可知P′(m,t)在第二象限,
∴m<0,t>0,即m>0,t<0,
∵拋物線的頂點(diǎn)坐標(biāo)為(1,4),
∴4t<0,
∵P在拋物線上,
∵A(1,0),P′(m,t),
當(dāng)時, 取得最大值.
把代入,得
解得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點(diǎn)M,連接CM.
(1)求證:BE=AD;
(2)用含α的式子表示∠AMB的度數(shù);
(3)當(dāng)α=90°時,取AD,BE的中點(diǎn)分別為點(diǎn)P,Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件:
①在足球賽中,弱隊(duì)?wèi)?zhàn)勝強(qiáng)隊(duì).
②拋擲1枚硬幣,硬幣落地時正面朝上.
③任取兩個正整數(shù),其和大于1
④長為3cm,5cm,9cm的三條線段能圍成一個三角形.
其中確定事件有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分線交于E,D是AE延長線上一點(diǎn),且∠BDC=120°.下列結(jié)論:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正確結(jié)論的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將7張如圖①所示的長為a、寬為b(a>b)的小長方形紙片,按如圖②所示的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設(shè)左上角與右下角的陰影部分的面積之差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a、b應(yīng)滿足( )
A. a=b B. a=3b C. a=b D. a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A在x軸的下方,y軸的右側(cè),到x軸的距離是4,到y軸的距離是3,則點(diǎn)A的坐標(biāo)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在“助殘日”舉行了一次“手拉手、獻(xiàn)愛心”的捐款活動,學(xué)校對已捐款學(xué)生人數(shù)及捐款金額情況進(jìn)行了調(diào)查.圖①表示的是各年級捐款人數(shù)占總捐款人數(shù)的百分比;圖②是學(xué)校對學(xué)生的捐款金額情況進(jìn)行抽樣調(diào)查并根據(jù)所得數(shù)據(jù)繪制的統(tǒng)計(jì)圖
(1)學(xué)校對多少名學(xué)生的捐款金額情況進(jìn)行了抽樣調(diào)查?
(2)這組捐款金額數(shù)據(jù)的平均數(shù)、中位數(shù)各是多少?
(3)若該校九年級共有400名學(xué)生捐款,估計(jì)全校學(xué)生捐款總金額大約多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com