【題目】如圖,四邊形ABCD為菱形,AB=BD,點B、C、D、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點EBDCG交于點H,連接FH,下列結 論:①AE=DF②FH∥AB;③△DGH∽△BGE;CG⊙O的直徑時,DF=AF.其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】四邊形ABCD為菱形,ABBD∴△ABD是等邊三角形,∵B,CD,G四個點在同一個⊙O上,∴∠GDC∠GBC180°,又∠BDC∠DBC60°,∴∠GDB∠GBD60°,又∠ADE∠EDB60°,∴∠ADE∠DBF.在△ADE△DBF中,∠A∠ADB,ADDB∠ADE∠DBF,∴△ADE≌△DBF,∴AEDF,故正確;∵B,C,D,G四個點在同一個⊙O上,∴∠DCG∠DBG,又∠DBG∠ADE,

∴∠ADE∠DCG.在△ADE△CDH中,∠A∠BDC,ADDC,∠ADE∠DCG,∴△ADE≌△DCH∴AEDH,又DFAE,∴DFDH.又∠ADB60°∴∠DFH60°,∴FH∥AB,故正確;由△ADE≌△DCH,得∠AED∠DHC,∴∠DHG∠DEB,又∠ADE∠DBG,∴∠EDB∠FBE,∴△DGH∽△BGE,故正確;當CG⊙O的直徑時,∠GBD30°,又∠ADB60°∠DFB90°,∵△ADB是等邊三角形,∴DFAF,故正確.故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】利民種子培育基地用A、B、C三種型號的玉米種子共1500粒進行發(fā)芽試驗,從中選出發(fā)芽率高的種子進行推廣.通過試驗知道,C型號種子的發(fā)芽率為80%,根據(jù)試驗數(shù)據(jù)繪制了下面兩個不完整的統(tǒng)計圖(圖1、圖2):

(1)C型號種子的發(fā)芽數(shù)是_________粒;

(2)直接寫出應選哪種型號的種子進行推廣?

(3)如果將所有已發(fā)芽的種子放到一起,從中隨機取出一粒,求取到C型號發(fā)芽種子的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(2,3),B(5,0),C(, 2).

①當時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;

②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;

(2)已知點D(1,1),點E(, ),其中點E是函數(shù)的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣(x+22+5的頂點坐標是(  )

A.2,5B.(﹣2,5C.(﹣2,﹣5D.2,﹣5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在二次函數(shù)y=﹣(x12+2的圖象中,若yx的增大而增大,則x的取值范圍是( 。

A.x>﹣1B.x1C.x<﹣1D.x1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】家電下鄉(xiāng)活動期間,凡購買指定家用電器的農(nóng)村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機,兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:

(1)A型洗衣機和B型洗衣機的售價各是多少元?

(2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},則(RM)∩(RN)等于(
A.(﹣1,3)
B.(﹣1,0)∪(2,3)
C.(﹣1,0]∪[2,3)
D.[﹣1,0]∪(2,3]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組13名學生的一次英語聽力測試成績分布如下表所示(滿分20分):

成績(分)

14

15

16

17

18

19

20

人數(shù)(人)

1

3

2

2

1

2

2

這13名學生聽力測試成績的中位數(shù)是( )
A.16分
B.17分
C.18分
D.19分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算。
(1) +(π﹣3.14)0+(﹣2)2
(2)(m﹣2n)2+(m+n)(m﹣n)

查看答案和解析>>

同步練習冊答案