【題目】已知二次函數(shù)yax22ax+ca0)圖象上的兩點(x1y1)和(3,y2),若y1y2,則x1的取值范圍是_____

【答案】1x13

【解析】

根據(jù)y1y2yax22ax+ca0)得到關(guān)于x1的不等式和方程,解得函數(shù)值為0x1的值并畫出函數(shù)圖象,則可得答案.

解:∵y1y2,

ax122ax1+c9a6a+c,

ax122ax13a0

a0,

∴函數(shù)yax122ax13a開口向下,

ax122ax13a0,

解得x1=﹣13,

畫出函數(shù)圖象示意圖:

由圖象可得,當(dāng)﹣1x3時,ax122ax13a0,

x1的取值范圍是﹣1x13

故答案為:﹣1x13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=圖象在第一象限上的一點,連結(jié)AO并延長交圖象的另一分支于點B,延長BA至點C,過點CCDx軸,垂足為D,交反比例函數(shù)圖象于點E.若,△BDC的面積為6,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在菱形ABCD中,∠ADC=60°,點HCD上任意一點(不與C、D重合),過點HCD的垂線,交BD于點E,連接AE

1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是   

2)如圖2,將DHE繞點D順時針旋轉(zhuǎn),當(dāng)點EH、C在一條直線上時,求證:AE+EH=CH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點A、B重合)的任一點,點C、DO上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組鄰邊均和一條對角線相等的四邊形叫做鄰和四邊形.

1)如圖1,四邊形ABCD中,∠ABC70°,∠BAC40°,∠ACD=∠ADC80°,求證:四邊形ABCD是鄰和四邊形.

2)如圖2,是由50個小正三角形組成的網(wǎng)格,每個小正三角形的頂點稱為格點,已知A,B,C三點的位置如圖,請在網(wǎng)格圖中標(biāo)出所有的格點D,使得以A,B,CD為頂點的四邊形為鄰和四邊形.

3)如圖3,△ABC中,∠ABC90°,AB4,BC4,若存在一點D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點F,點EAB的延長線上,射線EM經(jīng)過點C,且∠ACE+AFO180°

1)求證:EM是⊙O的切線;

2)若∠A=∠E,⊙O的半徑為1,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點從(0,3)出發(fā),沿軸以每秒1個單位長度的速度向下移動,同時動點出發(fā),沿軸以每秒2個單位長度的速度向右移動,當(dāng)點移動到點時,點、同時停止移動.點在第一象限內(nèi),在、移動過程中,始終有,且.則在整個移動過程中,點移動的路徑長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個函數(shù),自變量xa時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點.如果二次函數(shù)yx2+2x+c有兩個相異的不動點x1、x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

同步練習(xí)冊答案