【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)A(10), B(0,),對(duì)OAB連續(xù)作旋轉(zhuǎn)變換,依次得到1,2,3,4,則2019的直角頂點(diǎn)的坐標(biāo)為______________

【答案】(2019+6730)

【解析】

根據(jù)勾股定理列式求出AB的長,再根據(jù)第四個(gè)三角形與第一個(gè)三角形的位置相同可知每三個(gè)三角形為一個(gè)循環(huán)組依次循環(huán),然后求出一個(gè)循環(huán)組旋轉(zhuǎn)前進(jìn)的長度,再用2019除以3,根據(jù)商為673可知第2019個(gè)三角形的直角頂點(diǎn)為循環(huán)組的最后一個(gè)三角形的頂點(diǎn),求出即可.

∵點(diǎn)A(1,0) B(0,),

AB,

由圖可知,每三個(gè)三角形為一個(gè)循環(huán)組依次循環(huán),一個(gè)循環(huán)組前進(jìn)的長度為:213+

2019÷3673,

∴△2019的直角頂點(diǎn)是第673個(gè)循環(huán)組的最后一個(gè)三角形的直角頂點(diǎn),

673×(3+)=2019+673

∴△2019的直角頂點(diǎn)的坐標(biāo)為(2019+673,0).

故答案為:(2019+673,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的點(diǎn)A'處,若AOOB2,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的文明出行知識(shí)競賽中,81)和82)班參賽人數(shù)相同,成績分為A、B、C三個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為A級(jí)100分、B級(jí)90分、C級(jí)80分,達(dá)到B級(jí)以上(含B級(jí))為優(yōu)秀,其中82)班有2人達(dá)到A級(jí),將兩個(gè)班的成績整理并繪制成如下的統(tǒng)計(jì)圖,請(qǐng)解答下列問題:

1)求各班參賽人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)此次競賽中82)班成績?yōu)?/span>C級(jí)的人數(shù)為_______人;

3)小明同學(xué)根據(jù)以上信息制作了如下統(tǒng)計(jì)表:

平均數(shù)(分)

中位數(shù)(分)

方差

81)班

m

90

n

82)班

91

90

29

請(qǐng)分別求出mn的值,并從優(yōu)秀率和穩(wěn)定性方面比較兩個(gè)班的成績;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形AOBC中,OB4,OA3.分別以OBOA所在直線為x軸、y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與BC重合).過點(diǎn)F的反比例函數(shù)yk0)的圖象與邊AC交于點(diǎn)E

1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),點(diǎn)E的坐標(biāo)為__________

2)連接EF,求∠EFC的正切值;

3)如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求BG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在所給的方格紙中,每個(gè)小正方形的邊長都是1,四邊形是平行四邊形,連結(jié)(點(diǎn),均在格點(diǎn)上),請(qǐng)按要求完成下列作圖任務(wù).要求:①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.

1)在圖1中作的中位線,且

2)在圖2中取邊上點(diǎn),以為鄰邊作,且的面積等于的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是以AB為直徑的O上一點(diǎn),CDO切線,DAB的延長線上,作AECDE

1)求證:AC平分BAE;

2)若AC=2CE=6,求O的半徑;

3)請(qǐng)?zhí)剿鳎壕段ADBD,CD之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ABCCDE均為等邊三角形,直線AD和直線BE交于點(diǎn)F

①求證:ADBE;

②求∠AFB的度數(shù).

(2)如圖2ABCCDE均為等腰直角三角形,∠ABC=∠DEC90°,直線AD和直線BE交于點(diǎn)F

①求證:ADBE

②若ABBC3,DEEC.將CDE繞著點(diǎn)C在平面內(nèi)旋轉(zhuǎn),當(dāng)點(diǎn)D落在線段BC上時(shí),在圖3中畫出圖形,并求BF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,DBC中點(diǎn),AEBD,且AEBD

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點(diǎn)F,若∠ABE30°,AE2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形為矩形,連接,,點(diǎn)邊上.

1)如圖①,若,求的面積;

2)如圖②,延長至點(diǎn),使得,連接并延長交于點(diǎn),過點(diǎn)于點(diǎn),連接,求證:;

3)如圖③,將線段繞點(diǎn)旋轉(zhuǎn)一定的角度)得到線段,連接,點(diǎn)始終為的中點(diǎn),連接.已知,直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案