【題目】在下列四組多邊形的地板磚中:①正三角形與正方形;②正三角形與正十邊形;③正方形與正六邊形;④正方形與正八邊形.將每組中的兩種多邊形結(jié)合,能密鋪地面的是(

A. ①②③B. ①②④C. ③④D. ①④

【答案】D

【解析】

能夠密鋪地面的關(guān)鍵是看一看拼在同一頂點處的幾個角能否構(gòu)成周角.

①正三角形內(nèi)角為60°,正方形內(nèi)角為90°,可以由3個正三角形和2個正方形可以密鋪;

②正三角形和正十邊形無法密鋪;

③正方形與正六邊形無法密鋪;

④正方形內(nèi)角為90°,正八邊形內(nèi)角為135°,2個正八邊形和1個正方形可以密鋪.

綜上可得①④正確.
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).

(1)此時小強頭部E點與地面DK相距多少?

(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一邊長是8,另一邊長是12,則周長為( 。

A. 28B. 32C. 2832D. 3032

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(2x-12-2x-3)(2x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:[3x+y)(3x-y-3x-y2-2y),其中x=-1,y=2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=﹣y=ax+1a≠0)的圖象可能是(

A B

C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

實驗數(shù)據(jù)顯示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)隨時間的增加逐步增高達(dá)到峰值,之后血液中酒精含量隨時間的增加逐漸降低.

小明根據(jù)相關(guān)數(shù)據(jù)和學(xué)習(xí)函數(shù)的經(jīng)驗,對血液中酒精含量隨時間變化的規(guī)律進(jìn)行了探究,發(fā)現(xiàn)血液中酒精含量y是時間x的函數(shù),其中y表示血液中酒精含量(毫克/百毫升),x表示飲酒后的時間(小時).

下表記錄了6小時內(nèi)11個時間點血液中酒精含量y(毫克/百毫升)隨飲酒后的時間x(小時)(x>0)的變化情況.

飲酒后的時間x(小時)

1

2

3

4

5

6

血液中酒精含量y

(毫克/百毫升)

150

200

150

45

下面是小明的探究過程,請補充完整:

(1)如圖,在平面直角坐標(biāo)系xOy中,以上表中各對數(shù)值為坐標(biāo)描點,圖中已給出部分點,請你描出剩余的點,畫出血液中酒精含量y隨時間x變化的函數(shù)圖象;

(2)觀察表中數(shù)據(jù)及圖象可發(fā)現(xiàn)此函數(shù)圖象在直線x兩側(cè)可以用不同的函數(shù)表達(dá)式表示,請你任選其中一部分寫出表達(dá)式;

(3)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完250毫升低度白酒,第二天早上6:30能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若點Mx軸正半軸上的任意一點,過點MPQy軸,分別交函數(shù)x0)和x0)的圖象于點PQ,連接OP、OQ,則下列結(jié)論正確的是(

A. POQ不可能等于900 B.

C. 這兩個函數(shù)的圖象一定關(guān)于x軸對稱 D. POQ的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,n+1個直角邊長為1的等腰直角三角形,斜邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,則S1= ,Sn= (用含n的式子表示).

查看答案和解析>>

同步練習(xí)冊答案