【題目】如圖是小紅在一次放風(fēng)箏活動(dòng)中某時(shí)段的示意圖,她在A處時(shí)的風(fēng)箏線(整個(gè)過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小紅身高1.5米.
(1)當(dāng)風(fēng)箏的水平距離AC=18米時(shí),求此時(shí)風(fēng)箏線AD的長度;
(2)當(dāng)她從點(diǎn)A跑動(dòng)9米到達(dá)點(diǎn)B處時(shí),風(fēng)箏線與水平線構(gòu)成45°角,此時(shí)風(fēng)箏到達(dá)點(diǎn)E處,風(fēng)箏的水平移動(dòng)距離CF=10米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D.
【答案】(1)風(fēng)箏線AD的長度為12米;(2)風(fēng)箏原來的高度C1D為米.
【解析】
(1)在Rt△ACD中,由AD=可得答案;
(2)設(shè)AF=x米,則BF=AB+AF=9+x,在Rt△BEF中求得AD=BE==18+x,由cos∠CAD=可建立關(guān)于x的方程,解之求得x的值,即可得出AD的長,繼而根據(jù)CD=ADsin∠CAD求得CD從而得出答案.
(1)∵在Rt△ACD中,cos∠CAD=,AC=18、∠CAD=30°,
∴AD==(米),
答:此時(shí)風(fēng)箏線AD的長度為12米;
(2)設(shè)AF=x米,則BF=AB+AF=9+x(米),
在Rt△BEF中,BE===18+x(米),
由題意知AD=BE=18+x(米),
∵CF=10,
∴AC=AF+CF=10+x,
由cos∠CAD=可得,
解得:x=3+2,
則AD=18+×(3+2)=24+2,
∴CD=ADsin∠CAD=(24+3)×=,
則C1D=CD+C1C=+=,
答:風(fēng)箏原來的高度C1D為米。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,計(jì)劃圍一個(gè)面積為50 m2的長方形場地,一邊靠舊墻(墻長為10 m),另外三邊用籬笆圍成,并且它的長與寬之比為5∶2.討論方案時(shí),小英說:“我們不可能圍成滿足要求的長方形場地.”小軍說:“面積和長寬比例是確定的,肯定可以圍得出來.”請(qǐng)你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn).
(1)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C;
(2)過點(diǎn)P畫OA的垂線,垂足為H;
(3)線段PH的長度是點(diǎn)P到______的距離,______是點(diǎn)C到直線OB的距離,線段PC、PH、OC這三條線段大小關(guān)系是______(用“<”號(hào)連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶農(nóng)要對(duì)1號(hào)、2號(hào)、3號(hào)、4號(hào)四個(gè)品種共500株茶樹幼苗進(jìn)行成活實(shí)驗(yàn),從中選出成活率高的品種進(jìn)行推廣,通過實(shí)驗(yàn)得知,3號(hào)茶樹幼苗成活率為89.6%,把實(shí)驗(yàn)數(shù)據(jù)繪制成圖1和圖2所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)實(shí)驗(yàn)所用的2號(hào)茶樹幼苗的數(shù)量是 株;
(2)求出3號(hào)茶樹幼苗的成活數(shù),并補(bǔ)全統(tǒng)計(jì)圖2;
(3)該茶農(nóng)要從這四種茶樹中選擇兩個(gè)品種進(jìn)行推廣,請(qǐng)用列表或畫樹狀圖的方法求出1號(hào)品種被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線分別交軸,軸于點(diǎn).
(1)當(dāng),自變量的取值范圍是 (直接寫出結(jié)果);
(2)點(diǎn)在直線上.
①直接寫出的值為 ;
②過點(diǎn)作交軸于點(diǎn),求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新函數(shù)(如圖所示),請(qǐng)你在圖中畫出這個(gè)新圖象,當(dāng)直線y=﹣x+m與新圖象有4個(gè)交點(diǎn)時(shí),m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對(duì)稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
則正確的結(jié)論是( )
A. (1)(2)(3)(4) B. (2)(4)(5) C. (2)(3)(4) D. (1)(4)(5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元.廠方在開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價(jià)的付款.
現(xiàn)某客戶要到該服裝廠購買西裝20套,領(lǐng)帶條();
(1)若該客戶按方案①購買,需付款____________________元(用含的代數(shù)式表示);若該客戶按方案②購買,需付款__________________元(用含的代數(shù)式表示);
(2)若,通過計(jì)算說明此時(shí)按哪種方案購買較為合算?
(3)若時(shí),你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com