【題目】如圖,正的邊長(zhǎng)為2,頂點(diǎn)、在半徑為的圓上,頂點(diǎn)在圓內(nèi),將正繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上時(shí),則點(diǎn)運(yùn)動(dòng)的路線(xiàn)長(zhǎng)為__________(結(jié)果保留);若點(diǎn)落在圓上記做第1次旋轉(zhuǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上記做第2次旋轉(zhuǎn),再繞逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上,記做第3次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當(dāng)完成第2018次旋轉(zhuǎn)時(shí),邊共回到原來(lái)位置__________次.

【答案】 168

【解析】

首先連接OA′、OB、OC,再求出∠C′BC的大小,進(jìn)而利用弧長(zhǎng)公式問(wèn)題即可解決.因?yàn)?/span>ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來(lái)位置,2018÷12=168.166……,推出當(dāng)ABC完成第2018次旋轉(zhuǎn)時(shí),BC邊共回到原來(lái)位置168次.

解:如圖,連接OA′、OBOC
OB=OC=

,BC=2
∴△OBC是等腰直角三角形,
∴∠OBC=45°;
同理可證:∠OBA′=45°
∴∠A′BC=90°;
∵∠ABC=60°,
∴∠A′BA=90°-60°=30°,
∴∠C′BC=A′BA=30°,
∴當(dāng)點(diǎn)A第一次落在圓上時(shí),則點(diǎn)C運(yùn)動(dòng)的路線(xiàn)長(zhǎng)為: =
∵△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來(lái)位置,
2018÷12=168.166……
∴當(dāng)ABC完成第2018次旋轉(zhuǎn)時(shí),BC邊共回到原來(lái)位置168次,
故答案為:,168

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項(xiàng)重要內(nèi)容.某市城區(qū)近幾年來(lái),通過(guò)拆遷舊房,植草,栽樹(shù),修建公園等措施,使城區(qū)綠地面積不斷增加(如圖所示)

1)根據(jù)圖中所提供的信息,回答下列問(wèn)題:2001年底的綠地面積為  公頃,比2000年底增加了 公頃;在1999年,2000年,2001年這三年中,綠地面積增加最多的是 年;

2)為滿(mǎn)足城市發(fā)展的需要,計(jì)劃到2003年底使城區(qū)綠地總面積達(dá)到72.6公頃,試求今明兩年綠地面積的年平均增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】的值是整數(shù),則自然數(shù)的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,ECD邊上一點(diǎn),∠DAE=30°,MAE的中點(diǎn),過(guò)點(diǎn)M作直線(xiàn)分別與AD、BC相交于點(diǎn)P、Q.若PQ=AE,則AP等于 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商販用600元購(gòu)進(jìn)了一批水果,上市后銷(xiāo)售非常好,商販又用1400元購(gòu)進(jìn)第二批這種水果,所購(gòu)水果數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每箱進(jìn)價(jià)多了5元.

1)求該商販第一批購(gòu)進(jìn)水果每箱多少元;

2)由于儲(chǔ)存不當(dāng),第二批購(gòu)進(jìn)的水果中有10%腐壞,不能售賣(mài),該商販將兩批水果按同一價(jià)格全部銷(xiāo)售完畢后獲利不低于800元,求每箱水果的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn),,線(xiàn)段軸平行,且,拋物線(xiàn)

1)當(dāng)時(shí),求該拋物線(xiàn)與軸的交點(diǎn)坐標(biāo);

2)當(dāng)時(shí),求的最大值(用含的代數(shù)式表示);

3)當(dāng)拋物線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),的解析式為__________,頂點(diǎn)坐標(biāo)為__________,點(diǎn)__________(填“是”或“否”)在上.

若線(xiàn)段以每秒2個(gè)單位長(zhǎng)的速度向下平移,設(shè)平移的時(shí)間為(秒).

①若與線(xiàn)段總有公共點(diǎn),求的取值范圍;

②若同時(shí)以每秒3個(gè)單位長(zhǎng)的速度向下平移,軸及其右側(cè)的圖象與直線(xiàn)總有兩個(gè)公共點(diǎn),直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,函數(shù)的圖象記為,函數(shù)的圖象記為,其中為常數(shù).圖象,合起來(lái)得到的圖象記為

1)當(dāng)時(shí),

①點(diǎn)在圖象上,求的值;

②求圖象軸的交點(diǎn)坐標(biāo);

2)當(dāng)圖象的最低點(diǎn)到軸距離為時(shí),求的值;

3)已知線(xiàn)段的兩個(gè)端點(diǎn)坐標(biāo)分別為,當(dāng)圖象與線(xiàn)段有兩個(gè)交點(diǎn)時(shí),直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,點(diǎn)PBC邊上一點(diǎn),連接AP,點(diǎn)E,FAP上的兩點(diǎn),連接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF

求證:(1ABF≌△DAE;

2DEBF+EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,六邊形的六個(gè)內(nèi)角都等于,若,,則這個(gè)六邊形的周長(zhǎng)等于____.

查看答案和解析>>

同步練習(xí)冊(cè)答案