【題目】在正三角形、等腰梯形、矩形和圓這四種圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有( )種.
A.1
B.2
C.3
D.4
【答案】B
【解析】解:正三角形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,
等腰梯形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,
矩形和圓既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,
即既是軸對(duì)稱圖形,又是中心對(duì)稱圖形有2個(gè),
故選B,
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解中心對(duì)稱及中心對(duì)稱圖形的相關(guān)知識(shí),掌握如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=10,AC=8,點(diǎn)Q在AB上,且AQ=2,過Q做QR⊥AB,垂足為Q,QR交折線AC﹣CB于R(如圖1),當(dāng)點(diǎn)Q以每秒2個(gè)單位向終點(diǎn)B移動(dòng)時(shí),點(diǎn)P同時(shí)從A出發(fā),以每秒6個(gè)單位的速度沿AB﹣BC﹣CA移動(dòng),設(shè)移動(dòng)時(shí)間為t秒(如圖2).
(1)求△BCQ的面積S與t的函數(shù)關(guān)系式.
(2)t為何值時(shí),QP∥AC?
(3)t為何值時(shí),直線QR經(jīng)過點(diǎn)P?
(4)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),以PQ為邊在AB上方所作的正方形PQMN在Rt△ABC內(nèi)部,求此時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P的坐標(biāo)(2-a,3a+6),且點(diǎn)P到兩坐標(biāo)軸的距離相等,則點(diǎn)P的坐標(biāo)是 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程2x-a-5=0的解是x=-2,那么a的值為( )
A. -1 B. -9 C. 1 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形三條邊大小之間存在一定的關(guān)系,以下列各組線段為邊,能組成三角形的是( )
A.2cm、3cm、5cm
B.5cm、6cm、10cm
C.1cm、1cm、3cm
D.3cm、4cm、9cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com