【題目】因式分解
(1)4x2﹣9y2
(2)3x2y2+12xy+12
(3)a4﹣8a2+16
(4)m2(m﹣n)+n2(n﹣m)

【答案】
(1)解:4x2﹣9y2=(2x+3y)(2x﹣3y)
(2)解:3x2y2+12xy+12=3[(xy)2+4xy+4]=3(xy+2)2
(3)解:a4﹣8a2+16=(a2﹣4)2=(a+2)2(a﹣2)2
(4)解:m2(m﹣n)+n2(n﹣m)=(m﹣n)(m2﹣n2)=(m+n)(m﹣n)2
【解析】(1)直接用平方差公式分解即可;(2)先提取公因式,再用完全平方公式即可,(3)直接用完全平方公式分解因式;(4)先提取公因式,再用平方差公式即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若am=2,an=4,則am+n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)跨越式發(fā)展,我市新區(qū)建設(shè)正按投資計劃有序推進(jìn).新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號的挖掘機(jī)來完成這項工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:

租金(單位:元/臺時)

挖掘土石方量(單位:m3/臺時)

甲型挖掘機(jī)

100

60

乙型挖掘機(jī)

120

80


(1)若租用甲、乙兩種型號的挖掘機(jī)共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機(jī)各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個多邊形的內(nèi)角和等于1620°,則這個多邊形的邊數(shù)為(
A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.

(1)將ABP繞點B順時針旋轉(zhuǎn)90°,得到BEC,請你畫出BEC.

(2)連接PE,求證:PEC是直角三角形;

(3)填空:APB的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若( t﹣1)t2=1,則t可以取的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,頂點為M的拋物線y=ax2+bx(a0),經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,AOB=120°.

(1)求這條拋物線的表達(dá)式;

(2)連接OM,求AOM的大;

(3)如果點C在x軸上,且ABC與AOM相似,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在熱氣球上A處測得塔頂B的仰角為52°,測得塔底C的俯角為45°,已知A處距地面98米,求塔高BC.(結(jié)果精確到0.1米)

【參考數(shù)據(jù):sin52°=0.79,cos52°=0.62,tan52°=1.28】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這是反映爺爺每天晚飯后從家中出發(fā)去元寶山公園鍛煉的時間與距離之間關(guān)系的一幅圖.
(1)如圖反映的自變量、因變量分別是什么?
(2)爺爺每天從公園返回用多長時間?
(3)爺爺散步時最遠(yuǎn)離家多少米?
(4)爺爺在公園鍛煉多長時間?
(5)計算爺爺離家后的20分鐘內(nèi)的平均速度.

查看答案和解析>>

同步練習(xí)冊答案