【題目】已知(a+b)2=144, (a-b)2=36, 則ab=______;a2 + b2=_______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個完全相同的小球,分別標(biāo)有數(shù)字-2,0和1,小明從甲袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點Q的坐標(biāo)(x,y).
(1)寫出點Q所有可能的坐標(biāo);
(2)求點Q在x軸上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程x2﹣x+a=0有實根.
(1)求a的取值范圍;
(2)設(shè)x1、x2是方程的兩個實數(shù)根,且滿足(x1+1)(x2+1)=﹣1,求實數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點,CD:BD=1:2,AD與BE相交于點P,求的值.小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
求的值;
若CD=2,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AB=AC=10,BC=12,D為底邊BC的中點,以D為頂點的角∠PDQ=∠B.
(1)如圖1,若射線DQ經(jīng)過點A,DP交AC邊于點E,直接寫出與△CDE相似的三角形;
(2)如圖2,若射線DQ交AB于點F,DP交AC邊于點E,設(shè)AF=x,AE為y,試寫出y與x的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)在(2)的條件下,連接EF,則△DEF與△CDE相似嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市戶籍人口1694000人,則該市戶籍人口數(shù)據(jù)用科學(xué)記數(shù)法可表示為( 。
A.1.694×104人
B.1.694×105人
C.1.694×106人
D.1.694×107人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是延長FD到點G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
(3)結(jié)論應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn),1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.
(4)能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,試求出MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于, 兩點,交軸于點,直線經(jīng)過坐標(biāo)原點,與拋物線的一個交點為,與拋物線的對稱交于點,連接,點, 的坐標(biāo)分別為, .
()求拋物線的解析式,并分別求出點和點的坐標(biāo).
()在拋物線上是否存在點,使≌,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com