【題目】如圖,鐵路上A,B兩點相距25kmC,D為兩村莊,ADAB于點A,BCAB于點B,已知AD=15km,BC=10km,現(xiàn)在要在鐵路AB旁建一個貨運站E,使得C,D兩村到E站距離相等,問E站應建在離A地多遠的地方?

【答案】E站應建立在離A10km處.

【解析】試題分析:

AE= km,則BE=km,在RtAEDRtBEC中,分別用勾股定理表達出:DECE,由DE=CE就可建立方程求解.

試題解析

AE= km,則由題意可得:BE=km,

DAAB于點ACBAB于點B,

∴∠DAE=∠EBC=90°,

DE2=AE2+AD2=+225,CE2=BE2+BC2=+100

∵DE=CE,

解得 .

E站應建在距A10km.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上與表示數(shù)4的點距離5個單位長度的點表示的數(shù)是( ).
A.5
B.-1
C.9
D.-1或9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4因式分解的過程.

解:設x2-4x=y,

則原式=(y+2)(y+6)+4(第一步)

=y2+8y+16(第二步)

=(y+4)2第三步

=(x2-4x+4)2第四步

解答下列問題:

(1)該同學第二步到第三步運用了因式分解的方法是(

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

(2)該同學因式分解的結(jié)果是否徹底?(填徹底不徹底”).若不徹底,請直接寫出因式分解的最后結(jié)果

(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

【答案】(1)C;(2)不徹底,(x-2)4;(3)(x-1)4.

【解析】試題分析:(1)從二步到第三步運用了完全平方和公式;(2)x2-4x+4可運用完全平方差公式因式分解;(3)x2-2x=y,將(x2-2x)(x2-2x+2)+1變形成y(y+2)+1的形式,再進行因式分解;

試題解析:

(1)運用了C,兩數(shù)和的完全平方公式;

(2)不徹底;

(x2-4x+4)2=(x-2)4

(3)設x2-2x=y.

(x2-2x)(x2-2x+2)+1

=y(y+2)+1

=y2+2y+1

=(y+1)2…………………………7

=(x2-2x+1)2

=(x-1)4

型】解答
結(jié)束】
24

【題目】乘法公式的探究及應用.

探究問題

1是一張長方形紙條,將其剪成長短兩條后剛好能拼成圖2.

1) (2

1)圖1中長方形紙條的面積可表示為_______(寫成多項式乘法的形式).

2)拼成的圖2陰影部分的面積可表示為________(寫成兩數(shù)平方差的形式).

3)比較兩圖陰影部分的面積,可以得到乘法公式____.

結(jié)論運用

4運用所得的公式計算:

=________; =________.

拓展運用:

5)計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(-2,0),B(0,3),O 為原點.

(1)求三角線 AOB 的面積;

(2)將線段 AB 沿 x 軸向右平移4個單位,得線段A′B′,x軸上有一點C滿足三角形A′B′C的面積為 9 ,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年我市有近4萬名考生參加中考,為了解這些考生的數(shù)學成績,從中抽取1000名考生的數(shù)學成績進行統(tǒng)計分析,以下說法正確的是(
A.這1000名考生是總體的一個樣本
B.近4萬名考生是總體
C.每位考生的數(shù)學成績是個體
D.1000名學生是樣本容量

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

1(配方法)

23x2+5(2x+1)=0(公式法)

3)用適當?shù)姆椒ń夥匠蹋?/span> .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC、∠ACB的平分線BD,CE相交于O點,且BD交AC于點D,CE交AB于點E,某同學分析圖形后得出以下結(jié)論,上述結(jié)論一定正確的是______(填代號).

①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊的正方形EFGH的周長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】48°39′+67°41′=_________;25°12′18″=________度.

查看答案和解析>>

同步練習冊答案