【題目】如圖,鐵路上A,B兩點相距25km,C,D為兩村莊,AD⊥AB于點A,BC⊥AB于點B,已知AD=15km,BC=10km,現(xiàn)在要在鐵路AB旁建一個貨運站E,使得C,D兩村到E站距離相等,問E站應建在離A地多遠的地方?
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4因式分解的過程.
解:設x2-4x=y,
則原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
解答下列問題:
(1)該同學第二步到第三步運用了因式分解的方法是( )
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學因式分解的結(jié)果是否徹底?(填“徹底”或“不徹底”).若不徹底,請直接寫出因式分解的最后結(jié)果;
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
【答案】(1)C;(2)不徹底,(x-2)4;(3)(x-1)4.
【解析】試題分析:(1)從二步到第三步運用了完全平方和公式;(2)x2-4x+4可運用完全平方差公式因式分解;(3)設x2-2x=y,將(x2-2x)(x2-2x+2)+1變形成y(y+2)+1的形式,再進行因式分解;
試題解析:
(1)運用了C,兩數(shù)和的完全平方公式;
(2)不徹底;
(x2-4x+4)2=(x-2)4
(3)設x2-2x=y.
(x2-2x)(x2-2x+2)+1
=y(y+2)+1
=y2+2y+1
=(y+1)2…………………………7分
=(x2-2x+1)2
=(x-1)4.
【題型】解答題
【結(jié)束】
24
【題目】乘法公式的探究及應用.
探究問題
圖1是一張長方形紙條,將其剪成長短兩條后剛好能拼成圖2.
(1) (2)
(1)圖1中長方形紙條的面積可表示為_______(寫成多項式乘法的形式).
(2)拼成的圖2陰影部分的面積可表示為________(寫成兩數(shù)平方差的形式).
(3)比較兩圖陰影部分的面積,可以得到乘法公式:____.
結(jié)論運用
(4)運用所得的公式計算:
=________; =________.
拓展運用:
(5)計算:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(-2,0),B(0,3),O 為原點.
(1)求三角線 AOB 的面積;
(2)將線段 AB 沿 x 軸向右平移4個單位,得線段A′B′,x軸上有一點C滿足三角形A′B′C的面積為 9 ,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年我市有近4萬名考生參加中考,為了解這些考生的數(shù)學成績,從中抽取1000名考生的數(shù)學成績進行統(tǒng)計分析,以下說法正確的是( )
A.這1000名考生是總體的一個樣本
B.近4萬名考生是總體
C.每位考生的數(shù)學成績是個體
D.1000名學生是樣本容量
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC、∠ACB的平分線BD,CE相交于O點,且BD交AC于點D,CE交AB于點E,某同學分析圖形后得出以下結(jié)論,上述結(jié)論一定正確的是______(填代號).
①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com