【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+cx軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)x軸的正半軸上一點,將拋物線C繞點F旋轉(zhuǎn)180°,得到新的拋物線C/

(1)求拋物線C的函數(shù)表達式;

(2)若拋物線C/與拋物線Cy軸的右側(cè)有兩個不同的公共點,求m的取值范圍.

(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C/上的對應點P/,設MC上的動點,NC/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.

【答案】(1);(2)2<m;(3)m=6m=﹣3.

【解析】

試題(1)由題意拋物線的頂點C(0,4),A,0),設拋物線的解析式為,把A,0)代入可得a=,由此即可解決問題;

(2)由題意拋物線C的頂點坐標為(2m,﹣4),設拋物線C的解析式為,由,消去y得到,由題意,拋物線C與拋物線Cy軸的右側(cè)有兩個不同的公共點,則有,解不等式組即可解決問題;

(3)情形1,四邊形PMPN能成為正方形.作PEx軸于E,MHx軸于H.由題意易知P(2,2),當PFM是等腰直角三角形時,四邊形PMPN是正方形,推出PF=FM,PFM=90°,易證PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得Mm+2,m﹣2),理由待定系數(shù)法即可解決問題;情形2,如圖,四邊形PMPN是正方形,同法可得Mm﹣2,2﹣m),利用待定系數(shù)法即可解決問題.

試題解析:(1)由題意拋物線的頂點C(0,4),A,0),設拋物線的解析式為,把A,0)代入可得a=,∴拋物線C的函數(shù)表達式為

(2)由題意拋物線C的頂點坐標為(2m,﹣4),設拋物線C的解析式為,由,消去y得到 ,由題意,拋物線C與拋物線Cy軸的右側(cè)有兩個不同的公共點,則有,解得2<m,∴滿足條件的m的取值范圍為2<m

(3)結論:四邊形PMPN能成為正方形.

理由:1情形1,如圖,作PEx軸于E,MHx軸于H

由題意易知P(2,2),當PFM是等腰直角三角形時,四邊形PMPN是正方形,∴PF=FMPFM=90°,易證PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣mMm+2,m﹣2),∵點M上,∴,解得m=﹣3或﹣﹣3(舍棄),∴m=﹣3時,四邊形PMPN是正方形.

情形2,如圖,四邊形PMPN是正方形,同法可得Mm﹣2,2﹣m),把Mm﹣2,2﹣m)代入中,,解得m=60(舍棄),∴m=6時,四邊形PMPN是正方形.

綜上所述:m=6m=﹣3時,四邊形PMPN是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從城出發(fā)勻速行駛至城在整個行駛過程中,甲乙兩車離開城的距離與甲車行駛的時間之間的函數(shù)關系如圖所示下列說法錯誤的是(

甲、乙兩車從AA城出發(fā)勻速行駛至BB城在整個行駛過程中,甲乙兩車離開AA城的距離y(km)ykm與甲車行駛的時間t(h)th之間的函數(shù)關系如圖所示下列說法錯誤的是(

A.兩城相距千米

B.乙車比甲車晚出發(fā)小時,卻早到小時

C.乙車出發(fā)后小時追上甲車

D.在一車追上另一車之前,當兩車相距千米時,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形DOBC的頂點O與坐標原點重合,B、D分別在坐標軸上,點C的坐標為(6,4),反比例函數(shù)y=(x0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.

(1)求反比例函數(shù)的解析式;

(2)求△OEF的面積;

(3)設直線EF的解析式為y=k2x+b,請結合圖象直接寫出不等式k2x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著春節(jié)臨近,某兒童游樂場推出了甲、乙兩種消費卡,設消費次數(shù)為時,所需費用為元,且的函數(shù)關系如圖所示. 根據(jù)圖中信息,解答下列問題;

1)分別求出選擇這兩種卡消費時,關于的函數(shù)表達式.

2)求出點坐標.

3)洋洋爸爸準備元錢用于洋洋在該游樂場消費,請問選擇哪種消費卡劃算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(3)班“2017年新年聯(lián)歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.

(1)現(xiàn)小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,求小芳獲獎的概率.

(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們獲獎的機會相等嗎?通過樹狀圖分析說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線經(jīng)過點,點是雙曲線第三象限分支上的動點,過點軸,過點軸,垂足分別為,連接

的值;

的面積為,

①若直線的解析式為,求、的值;

②根據(jù)圖象,直接寫出的取值范圍;

③判斷直線的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩建筑物ABCD的水平距離為30米,如圖所示,從A點測得太陽落山時,太陽光線AC照射到AB后的影子恰好在CD的墻角時的角度∠ACB=60°,又過一會兒,當AB的影子正好到達CD的樓頂D時的角度∠ADE=30°,DEABE,則建筑物CD的高是多少米?≈1.732,結果保留兩位有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列給定的三點能確定一個圓的是(

A. 線段的中點及兩個端點

B. 角的頂點及角的邊上的兩點

C. 三角形的三個頂點

D. 矩形的對角線交點及兩個頂點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAC90°,EBC的中點,ADBC,AEDC,EFCD于點F.

(1)求證:四邊形AECD是菱形;

(2)AB6,BC10,求EF的長.

查看答案和解析>>

同步練習冊答案