【題目】如圖,在△ABC中,∠B=90°,tan∠C=,AB=6cm.動點P從點A開始沿邊AB向點B以1cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中,△PBQ的最大面積是( )
A.18cm2 B.12cm2 C.9cm2 D.3cm2
科目:初中數學 來源: 題型:
【題目】某中學初三年級的學生開展測量物體高度的實踐活動,他們要測量一幢建筑物AB的高度.如圖,他們先在點C處測得建筑物AB的頂點A的仰角為30°,然后向建筑物AB前進10m到達點D處,又測得點A的仰角為60°,那么建筑物AB的高度是________ m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】質地均勻的骰子六個面分別刻有1到6的點數,擲兩次骰子,得到向上一面的兩個點數,則下列事件中,發(fā)生可能性最大的是( )
A.點數都是偶數
B.點數的和為奇數
C.點數的和小于13
D.點數的和小于2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1在上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學科內綜合題:現把10個數:﹣1,23,15,12,0,﹣31,﹣11,29,43,﹣62.分別寫在10張紙條上,然后把紙條放進外形,顏色完全相同的小球內,再把這10個小球放進一個大玻璃瓶中,從中任意取一球,得到正數的可能性與得到負數的可能性哪個大.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總人口x(單位:人)的函數圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總人口的增多而增多
B.當該村總人口為50人時,人均耕地面積為1公頃
C.若該村人均耕地面積為2公頃,則總人口有100人
D.該村人均耕地面積y與總人口x成正比例
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E,F在函數y= (x>0)的圖象上,直線EF分別與x軸、y軸交于點A,B,且BE:BF=1:m.過點E作EP⊥y軸于P,已知△OEP的面積為1,則k值是 , △OEF的面積是(用含m的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,點P(3a,a)是反比例函數y= (k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數的解析式為( )
A.y=
B.y=
C.y=
D.y=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某蔬菜生產基地在氣溫較低時,用裝有恒溫系統的大鵬栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種,如圖是某天恒溫系統從開啟到關閉及關閉后,大棚內溫度y(℃)隨時間x(小時)變化的函數圖象,其中BC段是雙曲線y=的一部分.請根據圖中信息解析下列問題:
(1)求y與x的函數關系式;
(2)當x=16時,大棚內的溫度約為多少度?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com