【題目】已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中點(diǎn),以CD為直徑的⊙Q分別交BC、BA于點(diǎn)F、E,點(diǎn)E位于點(diǎn)D下方,連接EF交CD于點(diǎn)G.
(1)如圖1,如果BC=2,求DE的長(zhǎng);
(2)如圖2,設(shè)BC=x,=y,求y關(guān)于x的函數(shù)關(guān)系式及其定義域;
(3)如圖3,連接CE,如果CG=CE,求BC的長(zhǎng).
【答案】(1)DE=;(2)y=(x>1).(3)BC=1+.
【解析】
(1)如圖1中,連接CE.在Rt△CDE中,求出CD,CE即可解決問題.
(2)如圖2中,連接CE,設(shè)AC交⊙Q于K,連接FK,DF,DK.想辦法用x表示CD,DE,證明FK∥AB,推出,延長(zhǎng)構(gòu)建關(guān)系式即可解決問題.根據(jù)點(diǎn)E位于點(diǎn)D下方,確定x的取值范圍即可.
(3)如圖3中,連接FK.證明ED=EC,由此構(gòu)建方程即可解決問題.
(1)如圖1中,連接CE.
在Rt△ACB中,∵∠ACB=90°,AC=1,BC=2,
∴AB=,
∵CD 是⊙Q的直徑,
∴∠CED=90°,
∴CE⊥AB,
∵BD=AD,
∴CD=
∵ABCE=BCAC,
∴CE=,
在Rt△CDE中,DE=.
(2)如圖2中,連接CE,設(shè)AC交⊙Q于K,連接FK,DF,DK.
∵∠FCK=90°,
∴FK是⊙Q的直徑,
∴直線FK經(jīng)過點(diǎn)Q,
∵CD是⊙Q的直徑,
∴∠CFD=∠CKD=90°,
∴DF⊥BC,DK⊥AC,
∵DC=DB=DA,
∴BF=CF,CK=AK,
∴FK∥AB,
∴,
∵BC=x,AC=1,
∴AB=,
∴DC=DB=DA=,
∵△ACE∽△ABC,
∴可得AE=,
∴DE=AD﹣AE=,
∴,
,
∴y=(x>1).
(3)如圖3中,連接FK.
∵CE=CG,
∴∠CEG=∠CGE,
∵∠FKC=∠CEG,
∵FK∥AB,
∴∠FKC=∠A,
∵DC=DA,
∴∠A=∠DCA,
∴∠A=∠DCA=∠CEG=∠CGE,
∴∠CDA=∠ECG,
∴EC=DE,
由(2)可知:,
整理得:x2﹣2x﹣1=0,
∴x=1+或1﹣(舍棄),
∴BC=1+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩建筑物的水平距離BC為18m,從A點(diǎn)測(cè)得D點(diǎn)的俯角為 30,測(cè)得C點(diǎn)的俯角為 60° ,求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)的一次人口抽樣統(tǒng)計(jì)分析中,各年齡段(年齡取整數(shù))的人數(shù)如下表:
年齡段 | 0~9 | 10~19 | 20~29 | 30~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 |
人數(shù) | 9 | 11 | 17 | 18 | 17 | 12 | 8 | 6 | 2 |
請(qǐng)根據(jù)此表回答下列問題:
(1)這次抽查的樣本個(gè)體的數(shù)目是_____;
(2)樣本中年齡在60歲以上(含60歲)的頻率是_____;
(3)樣本中年齡的中位數(shù)落在表中給出的哪個(gè)年齡段內(nèi)?
(4)如果該地區(qū)現(xiàn)有人口80000人,為了關(guān)注人口老齡化問題,請(qǐng)估算該地區(qū)60歲以上(含60歲)的人口數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把滿足某種條件的所有點(diǎn)組成的圖形,叫做符合這個(gè)條件的點(diǎn)的軌跡,如圖,在Rt△ABC中,∠C=90°,AC=8,BC=12,動(dòng)點(diǎn)P從點(diǎn)A開始沿射線AC方向以1個(gè)單位秒的速度向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿射線CB方向以2個(gè)單位/秒的速度向點(diǎn)運(yùn)動(dòng),P、Q兩點(diǎn)分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過程中,線段PQ的中點(diǎn)M運(yùn)動(dòng)的軌跡長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請(qǐng)用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時(shí),.請(qǐng)將正確結(jié)論的序號(hào)填在橫線上__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)的距離之和PA+PB的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com