【題目】甲、乙兩人在筆直的公路上問起點、同終點、同方向勻速步行2400米,先到終點的人原地體息已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時向t(分)之間的函數(shù)關(guān)系如圖所示,下列說法中正確的是( 。
A. 甲步行的速度為8米/分
B. 乙走完全程用了34分鐘
C. 乙用16分鐘追上甲
D. 乙到達(dá)終點時,甲離終點還有360米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對現(xiàn)有多媒體設(shè)備進(jìn)行升級改造,已知購買3個鍵盤和1個鼠標(biāo)需要190元;購買2個鍵盤和3個鼠標(biāo)需要220元;
(1)求鍵盤和鼠標(biāo)的單價各是多少元?
(2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標(biāo)打八五折.若學(xué)校計劃購買鍵盤和鼠標(biāo)共50件,且總費(fèi)用不超過1820元,則最多可購買鍵盤多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某軟件科技公司20人負(fù)責(zé)研發(fā)與維護(hù)游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護(hù)人數(shù)的扇形統(tǒng)計圖和利潤的條形統(tǒng)計圖.
根據(jù)以上信息,網(wǎng)答下列問題
(1)直接寫出圖中a,m的值;
(2)分別求網(wǎng)購與視頻軟件的人均利潤;
(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護(hù)人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.
(1)求拋物線y=ax2+2x+c的解析式:;
(2)點D為拋物線上對稱軸右側(cè)、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;
(3)①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
②點Q在拋物線對稱軸上,其縱坐標(biāo)為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點和 ,與軸交于另一點,頂點為.
(1)求拋物線的解析式,并寫出點的坐標(biāo);
(2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;
(3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點E是AD的中點,連接BE,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四個三角形,使寫出的每個三角形的面積等于△AEF面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+1,下列結(jié)論:
①拋物線開口向上;
②拋物線與x軸交于點(-1,0)和點(1,0);
③拋物線的對稱軸是y軸;
④拋物線的頂點坐標(biāo)是(0,1);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個單位得到的.
其中正確的個數(shù)有( )
A. 5個B. 4個C. 3個
D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有10個人圍成一個圓圈做游戲.游戲的規(guī)則是:每個人心里都想好一個數(shù),并把自己想好的數(shù)如實地告訴他兩旁的兩個人,然后每個人將他兩旁的兩個人告訴他的數(shù)的平均數(shù)報出來.若報出來的數(shù)如圖所示,則報3的人心里想的數(shù)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=∠ABC.
(1)求證:PA是⊙O的切線;
(2)證明:;
(3)若BC=8,tan∠AFP=,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com