【題目】已知三角形的兩邊長分別為57,則第三邊的中線長x的取值范圍是( )

A. B. C. D. 無法確定

【答案】C

【解析】

如圖所示,延長中線AD使AD=ED,根據(jù)全等三角形的判定定理,可證明BDE≌△CDA;由全等性質(zhì)可知,BE=AC,所以由三邊關(guān)系可得7-5<AE<7+5;再結(jié)合,即可求出AD的取值范圍.

根據(jù)題意畫出圖形ABC中線為AD,延長AD使AD=DE.

ADABC的中線,

BD=CD.

AD=ED,ADC=EDB,BD=CD,

∴△BDE≌△CDA,

BE=AC.

在三角形ABE中由三邊關(guān)系得,7-5<AE<7+5.

AE是中線AD2倍,

∴中線的取值范圍為1<AE<6,即1<x<6.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊(duì)修建一條長1200 m的道路,采用新的施工方式,工效提升了50%,結(jié)果提前4天完成任務(wù).

1)求這個(gè)工程隊(duì)原計(jì)劃每天修道路多少米?

2)在這項(xiàng)工程中,如果要求工程隊(duì)提前2天完成任務(wù),那么實(shí)際平均每天修建道路的工效比原計(jì)劃增加百分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2 x+ 與x軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,已知點(diǎn)D(0,﹣ ).

(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PBD面積最大時(shí),過P作PQ⊥x軸于點(diǎn)Q,M為拋物線對(duì)稱軸上的一動(dòng)點(diǎn),過M作y軸的垂線,垂足為點(diǎn)N,連接PM,NQ,求PM+MN+NQ的最小值;
(3)在(2)問的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△BPQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過程中,設(shè)直線P′B′與x軸交于點(diǎn)E.則是否存在這樣的點(diǎn)E,使得△B′EQ″為等腰三角形?若存在,求此時(shí)OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)光盤行動(dòng),讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖。

(1)這次被調(diào)查的同學(xué)共有 名;

(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AC為對(duì)角線,延長CD至點(diǎn)E使CE=CA,連接AE。F為AB上一點(diǎn),且BF=DE,連接FC.

(1)若DE=1,CF=2,求CD的長。

(2)如圖2,點(diǎn)G為線段AE的中點(diǎn),連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有5個(gè)股東,每個(gè)股東的利潤相同,有100名工人,每名工人的工資相同.2015年第一個(gè)季度工人的工資總額與公司的股東總利潤情況見表:

該公司老板根據(jù)表中數(shù)據(jù),作出了圖1,并聲稱股東利潤和工人工資同步增長,公司和工人做到了“有福同享”.

針對(duì)老板的說法,解決下列問題:

(1)這三個(gè)月工人個(gè)人的月收入分別是________萬元;

(2)在圖2中,已經(jīng)做出這三個(gè)月每個(gè)股東利潤統(tǒng)計(jì)圖,請(qǐng)你補(bǔ)出這三個(gè)月工人個(gè)人月收入的統(tǒng)計(jì)圖;

(3)通過完成第(1),(2)問和對(duì)圖2的觀察,你如何看待老板的說法?(用一兩句話概括)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請(qǐng)你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y= x,過點(diǎn)M(2,0)作x軸的垂線交直線l于點(diǎn)N,過點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過點(diǎn)M1作x軸的垂線交直線l于N1 , 過點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2 , …;按此作法繼續(xù)下去,則點(diǎn)M8坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案