【題目】如圖1,OA=2,OB=4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰Rt△ABC,
(1)求C點(diǎn)的坐標(biāo);
(2)如圖2,P為y軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)向y軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以P為頂點(diǎn),PA為腰作等腰Rt△APD,過D作DE⊥x軸于E點(diǎn),求OPDE的值;
(3)如圖3,已知點(diǎn)F坐標(biāo)為(2,2),當(dāng)G在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),作Rt△FGH,始終保持∠GFH=90,FG與y軸負(fù)半軸交于點(diǎn)G(0,m),FH與x軸正半軸交于點(diǎn)H(n,0),當(dāng)G點(diǎn)在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下兩個(gè)結(jié)論:①mn為定值;②m+n為定值,其中只有一個(gè)結(jié)論是正確的,請(qǐng)找出正確的結(jié)論,并求出其值.
【答案】(1)點(diǎn)C的坐標(biāo)為(6,2); (2) OPDE= 2; (3)結(jié)論②是正確的,m+n=4.
【解析】
(1)過C點(diǎn)作CM⊥x軸于M點(diǎn),因?yàn)?/span>AC=AB,則作CM⊥x軸,即求CM和AM的值,容易得△MAC≌△OBA,根據(jù)已知即可求得C點(diǎn)的值;
(2)求OPDE的值則將其放在同一直線上,過D作DQ⊥OP于Q點(diǎn),即是求PQ的值,由圖易求得△AOP≌△PDQ(AAS),即可求得PQ的長(zhǎng);
(3)利用(2)的結(jié)論,可知m+n為定長(zhǎng)是正確的,過F分別作x軸和y軸的垂線,類似(2),即可求得m+n的值.
(1)過C作CM⊥x軸于M點(diǎn),如圖1,
∵CM⊥OA,AC⊥AB,
∴∠MAC+∠OAB=,∠OAB+∠OBA=
則∠MAC=∠OBA
在△MAC和△OBA中
則△MAC≌△OBA(AAS)
則CM=OA=2,MA=OB=4,則點(diǎn)C的坐標(biāo)為(6,2);
(2)過D作DQ⊥OP于Q點(diǎn),如圖2,
則OPDE=PQ,∠APO+∠QPD=,
∠APO+∠OAP=,則∠QPD=∠OAP,
在△AOP和△PDQ中
則△AOP≌△PDQ(AAS)
∴OPDE=PQ=OA=2;
(3)結(jié)論②是正確的,m+n=4,
如圖3,過點(diǎn)F分別作FS⊥x軸于S點(diǎn),FT⊥y軸于T點(diǎn),
則FS=FT=2,∠FHS=∠HFT=∠FGT,
在△FSH和△FTG中
則△FSH≌△FTG(AAS)
則GT=HS,
又∵G(0,m),H(n,0),點(diǎn)F坐標(biāo)為(2,2),
∴OT═OS=2,OG=|m|=m,OH=n,
∴GT=OGOT=m2,HS=OH+OS=n+2,
則2m=n+2,
則m+n=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△中,、的角平分線、交于點(diǎn),延長(zhǎng)、,,,則下列結(jié)論中正確的個(gè)數(shù)是( )
①CP平分∠ACF; ②∠ABC+2∠APC=180°;
③∠ACB=2∠APB; 、苋PM⊥BE,PN⊥BC,則AM+CN=AC;
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雷達(dá)站C處檢測(cè)到一枚由地面垂直升空的巡航導(dǎo)彈,導(dǎo)彈以240m/s的速度,用10秒從點(diǎn)A飛行到點(diǎn)B,在C處測(cè)得點(diǎn)A,B的仰角分別為34°和45°,求導(dǎo)彈發(fā)射位置O與雷達(dá)站C之間的距離(結(jié)果精確到0.1km),(參考數(shù)據(jù):sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠C=90°,按以下步驟:①分別以A.B為圓心,以大于AB的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M、N;②作直線MN交BC于點(diǎn)D. 若AC=1.5,∠B=15°.則BD等于( )
A.1.5B.2C.2.5D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是________;
(2)扇形統(tǒng)計(jì)圖中,“電視”所在扇形的圓心角的度數(shù)是________;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有80萬人,請(qǐng)你估計(jì)其中將“電腦上網(wǎng)和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖△ABC中,∠ABC=45°,AB=BC,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F.H是BC邊的中點(diǎn),連接DH與BE相交于點(diǎn)G,
(1)求證BF=AC;
(2)求證CE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=2,∠ABC=30°,點(diǎn)E是射線DA上一動(dòng)點(diǎn),把△CDE沿CE折疊,其中點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)D′,若CD′垂直于菱形ABCD的邊時(shí),則DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小明行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小麗在小明出發(fā)后1小時(shí)才乘上纜車,纜車的平均速度為190 m/min.設(shè)小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個(gè)行走過程中y與x的函數(shù)關(guān)系.
⑴ 小明行走的總路程是 m,他途中休息了 min.
⑵ ①當(dāng)60≤x≤90時(shí),求y與x的函數(shù)關(guān)系式;
②當(dāng)小麗到達(dá)纜車終點(diǎn)時(shí),小明離纜車終點(diǎn)的路程是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com