【題目】如圖,拋物線x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.

(1)求拋物線的函數(shù)關(guān)系式;

(2)若點(diǎn)D(2,2)是拋物線上一點(diǎn),那么在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得△BDP的周長(zhǎng)最短?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)求出△ABC外接圓心M的坐標(biāo).

【答案】(1)y=x2+x+3;(2)存在,P坐標(biāo)為(,);(3)圓心坐標(biāo):M(,).

【解析】

1)根據(jù)OAOC的長(zhǎng)即可求出AC兩點(diǎn)的坐標(biāo),代入解析式即可;

2)連接BD、AD,AD交對(duì)稱軸于點(diǎn)P,連接BP,要使△BDP的周長(zhǎng)最短,故只需使BP+DP最小即可,此時(shí)BP+DP=AP+DP=AD,根據(jù)兩點(diǎn)之間線段最短,故P為所求的點(diǎn),利用待定系數(shù)法和對(duì)稱軸公式分別求出直線AD的解析式及拋物線的對(duì)稱軸,即可求出P點(diǎn)坐標(biāo);

3)根據(jù)三角形的外接圓圓心為三邊中垂線的交點(diǎn),故M在拋物線對(duì)稱軸上,可設(shè)M的坐標(biāo)為(,a),根據(jù)平面直角坐標(biāo)系中任意兩點(diǎn)之間的距離公式和MA=MB,列方程即可.

(1)OA=2,OC=3

A(2,0)C(0,3),代入拋物線解析式

得:c=3,2 2b+3=0

解得:b=,c=3,

則拋物線解析式為y=x2+x+3

(2)存在,連接BDAD,交對(duì)稱軸于點(diǎn)P,連接BP,要使△BDP的周長(zhǎng)最短,故只需使BP+DP最小即可,此時(shí)BP+DP=AP+DP=AD,根據(jù)兩點(diǎn)之間線段最短,故P為所求的點(diǎn),

設(shè)直線AD解析式為y=mx+n(m≠0), A(2,0),D(2,2)代入得:

解得:m=,n=1,

∴直線AD解析式為y=x+1,

∵對(duì)稱軸為直線,

當(dāng)x=時(shí),y=,則P坐標(biāo)為(,).

(3)由題意可知:M在直線x=上, MA=MC

設(shè)M(a)

解得:a=

圓心坐標(biāo)M(,)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB90°

)如圖1,連接BD,若⊙O的半徑為6,弧AD=AB,求AB的長(zhǎng);

)如圖2,連接AC,若AD5,AB3,對(duì)角線AC平分∠DAB,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c中,4a﹣b=0,a﹣b+c>0,拋物線與x軸有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)之間的距離小于2.則下列結(jié)論:①abc<0,②c>0,③a+b+c>0,④4a>c,其中,正確結(jié)論的個(gè)數(shù)是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過AC、D三點(diǎn)的圓OAB于點(diǎn)E,連接DE、CE,∠BCE=∠CDE

1)求證:直線BC為圓O的切線;

2)猜想ADCE的數(shù)量關(guān)系,并說明理由;

3)若BC2,∠BCE30°,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射擊隊(duì)教練為了了解隊(duì)員訓(xùn)練情況,從隊(duì)員中選取甲、乙兩名隊(duì)員進(jìn)行射擊測(cè)試,相同條件下各射靶5次,成績(jī)統(tǒng)計(jì)如下:

命中環(huán)數(shù)

6

7

8

9

10

甲命中相應(yīng)環(huán)數(shù)的次數(shù)

0

1

3

1

0

乙命中相應(yīng)環(huán)數(shù)的次數(shù)

2

0

0

2

1

1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
2)試通過計(jì)算說明甲、乙兩人的成績(jī)誰比較穩(wěn)定?
3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績(jī)的方差會(huì)變小.(填變大、變小不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時(shí)距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;

(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;

(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);

(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)FDE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在陽光下,一名同學(xué)測(cè)得一根長(zhǎng)為1米的垂直地面的竹竿的影長(zhǎng)為0.6米,同時(shí)另一名同學(xué)測(cè)量樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級(jí)臺(tái)階上,測(cè)得落在教學(xué)樓第一級(jí)臺(tái)階上的影子長(zhǎng)為0.2米,一級(jí)臺(tái)階高為0.3米,如圖所示,若此時(shí)落在地面上的影長(zhǎng)為4.42米,則樹高為_____米.

查看答案和解析>>

同步練習(xí)冊(cè)答案