【題目】(8分)如圖,在ABCD中,BCD=120°,分別延長DC、BC到點E,F(xiàn),使得BCE和CDF都是正三角形.

(1)求證:AE=AF;

(2)求EAF的度數(shù).

【答案】(1)證明見試題解析;(2)60°.

【解析】

試題(1)根據(jù)平行四邊形的性質(zhì)得BAD=BCD=120°,ABC=ADC,AB=CD,BC=AD,根據(jù)等邊三角形的性質(zhì)得BE=BC,DF=CD,EBC=CDF=60°,即可證出ABE=FDA,AB=DF,BE=AD,SAS證明ABE≌△FDA,得出對應邊相等即可;

(2)根據(jù)全等三角形的性質(zhì)得AEB=FAD,求出AEB+BAE=60°,得出FAD+BAE=60°,即可得出EAF的度數(shù).

試題解析:(1)四邊形ABCD是平行四邊形,∴∠BAD=BCD=120°,ABC=ADC,AB=CD,BC=AD,∵△BCE和CDF都是正三角形,BE=BC,DF=CD,EBC=CDF=60°,∴∠ABE=FDA,AB=DF,BE=AD,在ABE和FDA中,AB=DF,ABE=JIAO FDA,BE=AD∴△ABE≌△FDA(SAS),AE=AF;

(2)∵△ABE≌△FDA,∴∠AEB=FAD,∵∠ABE=60°+60°=120°,∴∠AEB+BAE=60°,∴∠FAD+BAE=60°,∴∠EAF=120°﹣60°=60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在結(jié)束了380課時初中階段教學內(nèi)容的教學后,王老師計劃按原課程設置再增加70課時用于總復習,將380課時按內(nèi)容所占比例,繪制如下統(tǒng)計圖表(圖1、圖2),請根據(jù)圖表提供的信息,回答問題:

1)圖1統(tǒng)計與概率所在扇形的圓心角為   度;

2)圖2中的a   ;

3)在70課時的總復習中,王老師應安排多少課時復習圖形與幾何內(nèi)容?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;

(1)若∠E=60°,則∠E=______;

(2)請?zhí)剿鳌螮與∠F之間滿足的數(shù)量關系?說明理由.

(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長FG交EP于點P,求∠P的度數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度 /℃

……

-4

-2

0

2

4

4.5

……

植物每天高度增長量 /mm

……

41

49

49

41

25

19.75

……

這些數(shù)據(jù)說明:植物每天高度增長量 關于溫度 的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認為是哪一種函數(shù),并求出它的函數(shù)關系式;
(2)溫度為多少時,這種植物每天高度增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度x應該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點CA重合,點D落到D′處,折痕為EF

1)求證:△ABE≌△AD′F;

2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某段公路經(jīng)測算發(fā)現(xiàn),勻速行駛的車輛通過該段公路時,所需時間t(h)與行駛速度v(km/h)滿足反比例函數(shù)關系,其圖象為如圖所示的一段曲線.且端點為A(40,1)和B(m,0.5).

(1)求t與v的函數(shù)關系式及m的值;
(2)若該段公路限速50km/h,求通過該路段需要的最短時間和這段公路的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD長( )

A.4 cm
B.3 cm
C.5 cm
D.4 cm

查看答案和解析>>

同步練習冊答案