【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F
(1)求證:△AEF≌△DEB;
(2)證明:四邊形ADCF是菱形;
(3)若AB=4,AC=5,求菱形ADCF的面積.

【答案】(1)證明:∵AF∥BD,
∴∠AFE=∠DBE,
∵E是AD中點(diǎn),
∴AE=ED,
在△BDE和△FAE中,
,
∴△AFE≌△DBE.
(2)證明:連接CF.

∵△AFE≌△DBE,
∴AF=BD
∵∠BAC=90°,BD=CD,
∴AD=DC=DB,
∴AF∥CD,AF=DC,
∴四邊形ADCF是平行四邊形,
∵DA=CD,
∴四邊形ADCF是菱形.
(3)∵S△ABC=×AB×AC=10,
∵四邊形ADCF是菱形,BD=DC,S△ABC=2S△ADC
∴S菱形ADCF=2S△ADC=10.
【解析】(1)根據(jù)AAS證明即可判定.
(2)先證明四邊形ADCF是平行四邊形,再證明DA=DC即可.
(3)利用S菱形ADCF=2S△ADC=S△ABC即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數(shù),則圖中以A,B,C,D這四點(diǎn)中任意兩點(diǎn)為端點(diǎn)的所有線段長度之和可能是(
A.28
B.29
C.30
D.31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標(biāo)有數(shù)字0,1,2;乙袋中裝有3個完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2,0;現(xiàn)從甲袋中隨機(jī)抽取一個小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)抽取一個小球,記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M坐標(biāo)為(x,y).

1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);

2)求點(diǎn)Mxy)在函數(shù)y=-x+1的圖象上的概率;

3)在平面直角坐標(biāo)系xOy中,⊙O的半徑是2,求過點(diǎn)Mxy)能作⊙O的切線的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x22xm+1交x軸于點(diǎn)A(a,0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個判斷:①當(dāng)x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點(diǎn)Px1y1)和Qx2,y2),若x1<1< x2,且x1x2>2,則y1> y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時,四邊形EDFG周長的最小值為.其中正確判斷的序號是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)(-5a2b)(-3a);

(2)(2x3y)2·x3y+(-14x6)·(-xy)3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知9x2﹣mxy+16y2能運(yùn)用完全平方公式分解因式,則m的值為(
A.12
B.±12
C.24
D.±24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面圖形:①四邊形,②等邊三角形,③正方形,④等腰梯形,⑤平行四邊形,⑥圓,其中既是軸對稱圖形又是中心對稱圖形的有(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一副三角板的兩個直角頂點(diǎn)重合在一起.
(1)若∠EON=110°,求∠MOF的度數(shù);
(2)比較∠EOM與∠FON的大小,并寫出理由;
(3)求∠EON+∠MOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下的題目:
“在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長線上,且ED=EC,如圖,試確定線段AE與DB的大小關(guān)系,并說明理由”.
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時,如圖1,確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論:AEDB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).理由如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F.(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,CD= (請你直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案