(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為
點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.
(1)由已知得B (2,1),A (0,5).                 ……………………1分
設(shè)所求直線的解析式為y=kx+b,     ……………………1分
,
∴所求直線的解析式為y=-2x+5   ……………………1分
(2)如圖,作BE⊥AC于點E,由題意得四邊形ABCD是平行四邊形,點A的坐標(biāo)為
(0,-3),點C的坐標(biāo)為 (0,3)                   ……………………1分
可得AC=6                                    ……………………1分
∵□ABCD的面積為12,

∵m>0,即頂點B有y軸的右側(cè),且在直線y=x-3上,
∴頂點B的坐標(biāo)為B (2,-1)                    ……………………1分
又拋物線經(jīng)過點A (0,-3)

(3)①方法一:如圖,作BE⊥x軸于點E
由已知得:A的坐標(biāo)為 (0,b),C的坐標(biāo)為 (0,-b).
∵頂點B (m,n)在直線y=-2x+b上,
∴n=-2m+b,即點B的坐標(biāo)為(m,-2m+b)    ……………………1分
在矩形ABCD中,OC=OB,
OC2=OB2
即b2=m2+(-2m+b) 2
∴5m2-4mb=0
∴m (5m-4b)=0

方法二:如圖,作BE⊥x軸于點E
類似方法一可得:A的坐標(biāo)為 (0,b),C的坐標(biāo)為 (0,-b).
∵頂點B (m,n)在直線y=-2x+b上,
∴n=-2m+b,即點B的坐標(biāo)為(m,-2m+b)    ……………………1分
∴AE=b-(-2m+b)=2m
CE=-2m+b-(-b)=2b-2m,BE=m,
∵AB⊥BC于點B,
∴△ABC∽△AEB,
BE2=AE·CE,即m2=2m(2b-2m),

(只寫“存在”的給1分)
解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:013

(2004浙江臺州、溫州)甲、乙、丙三位同學(xué)進行立定跳遠比賽,每人輪流跳一次稱為一輪,每輪按名次從高到低分別得3分、2分、1分(沒有并列名次),他們一共進行了五輪比賽,結(jié)果甲共得14分;乙第一輪得3分,第二輪得1分,且總分最低,那么丙得到的分數(shù)為

[  ]

A.8分
B.9分
C.10分
D.11分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為

點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直

線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(浙江臺州卷)數(shù)學(xué) 題型:解答題

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為
點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為

點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直

線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案