【題目】如圖,已知:△ABC中,AB=AC,M、D、E分別是BC、AB、AC的中點.
(1)求證:MD=ME;
(2)若MD=3,求AC的長.
【答案】
(1)證明:連接AM,∵AB=AC,M是BC的中點,∴AM⊥BC.∵在Rt△ABM和Rt△ACM中,∠BMA=∠CMA=90°,D、E分別是AB、AC的中點,∴MD= AB,ME= AC .∵AB=AC,∴MD=ME .
(2)解:∵MD=3,
MD= AB,∴AC=AB=6.
【解析】(1)連接AM利用等腰三角形的三線合一得出AM⊥BC,然后利用直角三角形斜邊上的中線等于斜邊的一半得出結論;
(2)由(1)知MD= AB又AB=AC,得出結論。
【考點精析】本題主要考查了等腰三角形的性質和直角三角形斜邊上的中線的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析表達式為y=- x-1,且l1與x軸交于點D,直線l2經過定點A(2,0),B(-1,3),直線l1與l2交于點C.
(1)求直線l2的函數(shù)關系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系xOy中,反比例函數(shù)y1= (x>0)的圖象與一次函數(shù)y2=kx-k的圖象的交點為A(m,2).
(1)求一次函數(shù)的解析式;
(2)觀察圖像,直接寫出使y1≥y2的x的取值范圍.
(3)設一次函數(shù)y=kx-k的圖象與y軸交于點B,若點P是x軸上一點,且滿足△PAB的面積是4,請寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com