【題目】為推廣勞動(dòng)教育,美化校園環(huán)境,學(xué)校決定在農(nóng)場(chǎng)基地鋪設(shè)一條觀景小道.經(jīng)設(shè)計(jì),鋪設(shè)這條小道需A,B兩種型號(hào)石磚共200塊.已知:購買3塊A型石磚,2塊B型石磚需要110元;購買5塊A型石磚,4塊B型石磚需要200元.
(1)求A,B兩種型號(hào)石磚單價(jià)各為多少元?
(2)已知B型石磚正在進(jìn)行促銷活動(dòng):購買B型石磚數(shù)量在60塊以內(nèi)(包括60塊)時(shí),不優(yōu)惠;購買B型石磚數(shù)量超過60塊時(shí),每超過1塊,購買的所有B型石磚單價(jià)均降0.05元,問:學(xué)校采購石磚,最多需要多少預(yù)算經(jīng)費(fèi)?
【答案】(1)A,B兩種型號(hào)石磚單價(jià)分別為20元,25元;(2)學(xué)校采購石磚,最多需要4320元預(yù)算經(jīng)費(fèi)
【解析】
(1)設(shè)A,B兩種型號(hào)石磚單價(jià)分別為x元,y元,根據(jù)“購買3塊A型石磚,2塊B型石磚需要110元;購買3塊A型石磚,4塊B型石磚需要200元”列方程組解得即可;
(2)設(shè)購買B型石磚m塊,采購石所需費(fèi)用為W元,結(jié)合m的范圍得出W與m的關(guān)系式,利用一次函數(shù)的性質(zhì)解答即可.
解:(1)設(shè)A,B兩種型號(hào)石磚單價(jià)分別為x元,y元,
解答
∴A,B兩種型號(hào)石磚單價(jià)分別為20元,25元.
(2)設(shè)購買B型石磚m塊,采購石所需費(fèi)用為W元,
當(dāng)0<m≤60時(shí),W=20(200﹣m)+25m=5m+4000,
可知,當(dāng)m=60時(shí),W最大=4300元;
當(dāng)60<m≤200時(shí),
W=20(200﹣m)+m[25﹣0.05(m﹣60)]=﹣0.05m2+8m+4000=﹣0.05(m﹣80)2+4320,
可知,當(dāng)m=80時(shí),W最大=4320元;
答:學(xué)校采購石磚,最多需要4320元預(yù)算經(jīng)費(fèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點(diǎn)為D的拋物線與x軸交于A(-1,0),C(3,0)兩點(diǎn),與y軸交于B點(diǎn).
(1)求該拋物線的解析式及點(diǎn)D坐標(biāo);
(2)若點(diǎn)Q是該拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)AQ+QB最小時(shí),直接寫出直線AQ的函數(shù)解析式;
(3)若點(diǎn)P為拋物上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P在x軸上方,過P作PK垂直x軸于點(diǎn)K,是否存在點(diǎn)P使得A,K,P三點(diǎn)形成的三角形與△DBC相似?如存在,求出點(diǎn)P的坐標(biāo),如不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對(duì)稱(點(diǎn)A′和A,B′和B分別對(duì)應(yīng)).若AB=1,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點(diǎn)A′,B,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】興隆湖是成都天府新區(qū)著名的生態(tài)綠地工程.在一次戶外綜合實(shí)踐活動(dòng)中,小明同學(xué)所在的興趣小組用無人機(jī)航拍測(cè)量云圖廣場(chǎng)A與南山碼頭B的直線距離.由于無人機(jī)控制距離有限,為了安全,不能直接測(cè)量,他們采用如下方法:如圖,小明在云圖廣場(chǎng)A的正上方點(diǎn)C處測(cè)得南山碼頭B的俯角α=17.09°;接著無人機(jī)往南山碼頭B方向水平飛行0.9千米到達(dá)點(diǎn)D處,測(cè)得此時(shí)南山碼頭B的俯角β=45°.已知AC⊥AB,CD∥AB,請(qǐng)根據(jù)測(cè)量數(shù)據(jù)計(jì)算A,B兩地的距離.(結(jié)果精確到0.1km,參考數(shù)據(jù):sinα≈0.29,tanα≈0.31,sinβ≈0.71)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2分別與x軸,y軸交于點(diǎn)A,B,點(diǎn)C是反比例函數(shù)y=的圖象在第一象限內(nèi)一動(dòng)點(diǎn).過點(diǎn)C作直線CD⊥AB.交x軸于點(diǎn)D,交AB于點(diǎn)E.則CE:DE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接暑假旅游高峰的到來,某旅游紀(jì)念品商店決定購進(jìn)A、B兩種紀(jì)念品.若購進(jìn)A種紀(jì)念品7件,B種紀(jì)念品4件,需要760元;若購進(jìn)A種紀(jì)念品5件.B種紀(jì)念品8件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件.考慮市場(chǎng)需求和資金周轉(zhuǎn),這100件紀(jì)念品的資金不少于7000元,但不超過7200元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售A種紀(jì)念品每件可獲利潤(rùn)30元,B種紀(jì)念品每件可獲利潤(rùn)20元,用(2)中的進(jìn)貨方案,哪一種方案可獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長(zhǎng)率;
(2)若年平均增長(zhǎng)率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線:y1=與x軸、y軸相交于A、B兩點(diǎn),與雙曲線(k<0,x>0)相交于第四象限的點(diǎn)C,過點(diǎn)C作直線l⊥x軸,垂足為D,若△ABD的面積為,且B是AC的中點(diǎn).
(1)求k的值;
(2)直接寫出的解集;
(3)若P為直線l的一動(dòng)點(diǎn),點(diǎn)P的縱坐標(biāo)為m,∠APB≥30°,求m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O經(jīng)過菱形ABCD的頂點(diǎn)B,C,且與邊AD相切于點(diǎn)E.若AE=1,ED=5,則⊙O的半徑為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com