【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長(zhǎng)是( )
A.7
B.8
C.7
D.7
【答案】C
【解析】解:如圖所示:
∵四邊形ABCD是正方形,
∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,
∴∠BAE+∠DAG=90°,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SSS),
∴∠ABE=∠CDF,
∵∠AEB=∠CFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAG=∠CDF,
同理:∠ABE=∠DAG=∠CDF=∠BCH,
∴∠DAG+∠ADG=∠CDF+∠ADG=90°,
即∠DGA=90°,
同理:∠CHB=90°,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(AAS),
∴AE=DG,BE=AG,
同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,
∴EG=GF=FH=EF=12﹣5=7,
∵∠GEH=180°﹣90°=90°,
∴四邊形EGFH是正方形,
∴EF= EG=7 ;
故選:C.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( )
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D.關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)正整數(shù)能表示成兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.
如:
因此,4,12,20這三個(gè)數(shù)都是神秘?cái)?shù).
(1)28和2012這兩個(gè)數(shù)是不是神秘?cái)?shù)?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是4的倍數(shù),請(qǐng)說(shuō)明理由.
(3)兩個(gè)連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘?cái)?shù)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家藍(lán)莓采摘園的草莓品質(zhì)相同,銷售價(jià)格都是每千克30元,“五一”假期,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園購(gòu)買60元的門票,采摘的藍(lán)莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的藍(lán)莓超過10千克后,超過部分五折優(yōu)惠,優(yōu)惠期間,設(shè)某游客的藍(lán)莓采摘量為(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元).
(1)當(dāng)采摘量超過10千克時(shí),求與的關(guān)系式;
(2)若要采摘40千克藍(lán)莓,去哪家比較合算?請(qǐng)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間有技術(shù)工人85人,平均每天每人可加工甲種部件16個(gè)或乙種部件10個(gè),2個(gè)甲種部件和3個(gè)乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正△ABC的邊長(zhǎng)為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的自變量x滿足 ≤x≤2時(shí),函數(shù)值y滿足 ≤y≤1,則下列函數(shù)①y= x,②y= ,③y= ,④y=﹣ x+ ,⑤y=(x﹣1)2 , 符合條件的函數(shù)有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度數(shù);
(2)若∠COM=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的例題,再解答后面的題目.
例:已知x2+y2﹣2x+4y+5=0,求x+y的值.
解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,
即(x﹣1)2+(y+2)2=0.
因?yàn)椋?/span>x﹣1)2≥0,(y+2)2≥0,它們的和為0,
所以必有(x﹣1)2=0,(y+2)2=0,
所以x=1,y=﹣2.
所以x+y=﹣1.
題目:已知x2+4y2﹣6x+4y+10=0,求xy的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com