【題目】已知:△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.
(1)求證:AD平分∠BAC;
(2)若DF∥AB,則BD與CD有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
【答案】(1)見解析;(2) BD=2CD證明見解析
【解析】
(1)連接OD.根據(jù)圓的半徑都相等的性質(zhì)及等邊對等角的性質(zhì)知:∠OAD=∠ODA;再由切線的性質(zhì)及平行線的判定與性質(zhì)證明∠OAD=∠CAD;
(2)連接OF,根據(jù)等腰三角形的性質(zhì)以及圓周角定理證得∠BAC=60°,根據(jù)平行線的性質(zhì)得出BD:CD=AF:CF,∠DFC=∠BAC=60°,根據(jù)解直角三角形即可求得結(jié)論.
(1)證明:連接OD,
∴OD=OA,
∴∠OAD=∠ODA,
∵BC為⊙O的切線,
∴∠ODB=90°,
∵∠C=90°,
∴∠ODB=∠C,
∴OD∥AC,
∴∠CAD=∠ODA,
∴∠OAD=∠CAD,
∴AD平分∠BAC;
(2)連接OF,
∵DF∥AB,
∴∠OAD=∠ADF,
∵AD平分∠BAC,
∴∠ADF=∠OAF,
∵∠ADF=∠AOF,
∴∠AOF=∠OAF,
∵OA=OF,
∴∠OAF=∠OFA,
∴△AOF是等邊三角形,
∴∠BAC=60°,
∵∠ADF=∠DAF,
∴DF=AF,
∵DF∥AB,
∴BD:CD=AF:CF,∠DFC=∠BAC=60°,
∴=2,
∴BD=2CD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計圖如下:
根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超過300萬人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)求證:無論p為何值,方程(x-2)(x-3)-p2=0總有兩個不相等的實數(shù)根.
(2)若方程(x-2)(x-3)-p2=0的兩根為正整數(shù),試求p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=45°,CD⊥AB于點D,AE⊥BC于點E,連接DE.
(1)如圖1,當(dāng)△ABC為銳角三角形時,
①依題意補全圖形,猜想∠BAE與∠BCD之間的數(shù)量關(guān)系并證明;
②用等式表示線段AE,CE,DE的數(shù)量關(guān)系,并證明;
(2)如圖2,當(dāng)∠ABC為鈍角時,依題意補全圖形并直接寫出線段AE,CE,DE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC,BC分別與⊙O交于點D,E,則下列說法一定正確的是( 。
A.連接BD,可知BD是△ABC的中線B.連接AE,可知AE是△ABC的高線
C.連接DE,可知D.連接DE,可知S△CDE:S△ABC=DE:AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與軸交于點A,與函數(shù)的圖象交于C、D兩點,以OC、OD為鄰邊作平行四邊形OCED.下列結(jié)論中:①OC=OD;②若,則當(dāng)時,;③若,則平行四邊形OCED的面積為3;④若∠COD=45°,則.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,使點A的對應(yīng)點D恰好落在邊AB上,點B的對應(yīng)點為E,連接BE,下列四個結(jié)論:①AC=AD;② AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正確的是( )
A.②B.②③C.③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園(矩形ABCD),墻長為22m,這個矩形的長AB=xm,菜園的面積為Sm2,且AB>AD.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若要圍建的菜園為100m2時,求該萊園的長.
(3)當(dāng)該菜園的長為多少m時,菜園的面積最大?最大面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上的一點,AE⊥CD交DC的延長線于E,交⊙O于G,CF⊥AB于F,點C是弧BG的中點.
(1)求證:DE是⊙O的切線;
(2)若AF,BF(AF>BF)是一元二次方程x2﹣8x+12=0的兩根,求CE和AG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com