【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)

1)用代數(shù)式表示窗戶能射進陽光的面積是   .(結(jié)果保留π

2)當b1時,求窗戶能射進陽光的面積是多少?(取π≈3

3)小亮又設計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進陽光的面積是否更大?如果更大,那么大多少?(結(jié)果保留π

【答案】1abπb2;(2;(3)此時窗戶能射進陽光的面積更, 比原來大

【解析】

1)根據(jù)長方形的面積公式列出式子,再根據(jù)圓的面積公式求出陰影部分的面積,再進行相減即可;

2)根據(jù)(1)得出的式子,再把ab的數(shù)值代入即可求出答案;

3)利用(1)的方法列出代數(shù)式,兩者相比較即可.

解:(1

2)當時,

3)如圖2,窗戶能射進陽光的面積=

∴此時,窗戶能射進陽光的面積更大,

∴此時,窗戶能射進陽光的面積比原來大

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自行車廠某周計劃生產(chǎn)2100輛電動車,平均每天生產(chǎn)電動車300輛.由于各種原因,實際每天的生產(chǎn)量與計劃每天的生產(chǎn)量相比有出入,下表是該周的實際生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負,單位:輛):

星期

減增

(1)該廠星期一生產(chǎn)電動車________輛;

(2)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)電動車________輛;

(3)該廠實行記件工資制,每生產(chǎn)一輛車可得60元,那么該廠工人這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把正整數(shù)1,2,3,4,2016排列成如圖所示的形式.

(1)用一個矩形隨意框住4個數(shù),把其中最小的數(shù)記為,另三個數(shù)用含式子表示出來,當被框住的4個數(shù)之和等于418時,值是多少?

(2)被框住的4個數(shù)之和能否等于724?如果能,請求出此時x值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了更好保障居民飲用水安全,環(huán)保局決定購10臺污水處理設備,現(xiàn)有A、B兩種型號的設備,價格與每臺日處理污水的能力見下表.

1)若縣環(huán)保局購買污水處理設備的資金不超過105萬元,你認為有哪幾種方案.

2)在(1)的條件下,每日要求處理污水量不低于2040噸,為了節(jié)約資金,請設計一個最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了  名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形OABC在平面直角坐標系內(nèi)的位置如圖所示,點O為坐標原點,點A的坐標為(10,0),點B的坐標為(10,8),已知直線AC與雙曲線ym0)在第一象限內(nèi)有一交點Q5,n).

1)求直線AC和雙曲線的解析式;

2)若動點PA點出發(fā),沿折線AOOC的路徑以每秒2個單位長度的速度運動,到達C處停止.求△OPQ的面積S與的運動時間t秒的函數(shù)關(guān)系式,并求當t取何值時S10

查看答案和解析>>

同步練習冊答案